|本期目录/Table of Contents|

[1]刘吉定,王涛,陈攀.经验过程配重和的大数定律的一个结果[J].武汉工程大学学报,2008,(02):117-119.
 LIU Ji ding,WANG Tao,CHEN Pan.A result of the law of large numbers for weighted empirical processes[J].Journal of Wuhan Institute of Technology,2008,(02):117-119.
点击复制

经验过程配重和的大数定律的一个结果(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2008年02期
页码:
117-119
栏目:
机电与信息工程
出版日期:
2008-02-28

文章信息/Info

Title:
A result of the law of large numbers for weighted empirical processes
文章编号:
10044736(2008)02011703
作者:
刘吉定王涛陈攀
武汉工程大学理学院,湖北 武汉 430074
Author(s):
LIU Jiding WANG Tao CHEN Pan
(School of Sciences,Wuhan Institute of Technology,Wuhan 430074,China)
关键词:
经验过程随机元的配重和对称化几乎处处收敛
Keywords:
empirical processesweighted sums of random elements symmetrization almost sure convergence
分类号:
O 211.4
DOI:
-
文献标志码:
A
摘要:
研究了经验过程中配重系数具有某些较弱性质的配重和收敛问题.利用经验过程中已有的概率不等式与对称化手法,得到:在条件E‖f(X0)‖pG<∞(p>1)下,经验过程中的独立同分布随机元序列的配重Marcinkiewicz和几乎处处收敛与依概率收敛是等价的.
Abstract:
Convergence for the weighted sums whose weighting coefficients is provided with some weaker natures in empirical processes is investigated.With the probability inequality and the symmetrization skill which have been obtained in empirical processes,it is obtained that almost sure convergence and convergence in probability of the weighted Marcinkiewicz sums of a sequence of random elements that are independent and identically distributed in empirical processes are equivalent under the condition E‖f(X0)‖pG<∞(p>1)

参考文献/References:

[1]Ledoux M,Talagrand M.Comparison Theorems,Random Geometry and Some Limit Theorems for Empirical Processes[J].Ann Prob,1989,17(2):596631.
[2]陈夏.B值随机元及经验过程的Kolmogorov重对数律[J].数学学报,1993,36(5):600619.
[3]张涤新.无界函数指标集上经验过程大偏差的局部概率不等式及应用[J].中国科学(A辑),2003,33(6):654661.
[4]刘吉定,胡宗材.经验过程的Cesàro大数定律[J].吉林大学自然科学学报,1998,(4):17.
[5]Heinkel B.An infinitedimensional law of large numbers in Cesàros sense[J].J Theoret Prob,1990,3(4):533546.
[6]苏中根.独立B值随机序列的Marcinkiewicz大数律[J].数学学报,1993,36(6):731739.
[7]HoffmannJrgensen J.Sums of Independent Banach Space Valued Random Variables[J].Studia Math,1974,52:159186.
[8]de Acosta A.Strong Exponential Integrability of Sums of Independent Bvalued Random Vectors[J].Prob Math Stat,1980,1:133150.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:20070109作者简介:刘吉定(1963),男,湖南邵阳人,副教授.研究方向:概率论极限理论
更新日期/Last Update: