|本期目录/Table of Contents|

[1]陈嵘,程刚,吴际良,等.含铋复合材料对幽门螺杆菌的多联治疗的研究[J].武汉工程大学学报,2009,(01):5-9.
 CHEN Rong,CHENG Gang,WU Ji liang,et al.Research on the application of inorganic bismuth nanocomposites in multipleinhibition against H. pylori[J].Journal of Wuhan Institute of Technology,2009,(01):5-9.
点击复制

含铋复合材料对幽门螺杆菌的多联治疗的研究
()
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2009年01期
页码:
5-9
栏目:
化学与化学工程
出版日期:
2009-01-28

文章信息/Info

Title:
Research on the application of inorganic bismuth
nanocomposites in multipleinhibition against H. pylori
文章编号:
16742869(2009)01000505
作者:
陈嵘1程刚1吴际良1肖烽1谢尧平1孙红哲2
1.武汉工程大学化工与制药学院,绿色化工过程省部共建教育部重点实验室,湖北省新型反应器与绿色化学工艺重点实验室, 湖北 武汉 430074;
2.香港大学化学系,香港
Author(s):
CHEN Rong1CHENG Gang1WU Jiliang1XIAO Feng1XIE Yaoping1SUN Hongzhe2
1.School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology;Key Laboratory for Green Chemical
Process of Ministry of Education,Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan 430074,China;
2.Department of Chemistry,the University of Hong Kong,Pokfulam,Hong Kong
关键词:
无机复合材料幽门螺杆菌多联治疗
Keywords:
bismuthinorganic nanocompositesH.pylorimutipletreatment
分类号:
TQ 050.4+21
DOI:
-
文献标志码:
A
摘要:
将以具有链状高分子结构的柠檬酸铋为模板和前体合成出本身具有抑菌活性的含铋纳米材料,并以此为载体,通过吸附、填充、化学结合等方法与药物小分子或抗生素形成复合材料.研究含铋纳米材料和小分子复合过程的相互作用.评价含铋纳米材料在复合前后对幽门螺杆菌生长的抑制活性的变化.初步研究在模拟生理条件下,纳米材料分解和释放药物的过程,为研究开发新的治疗消化性溃疡疾病的药物提供新的思路.
Abstract:
Different bismuth nanomaterials will be synthesized and characterized using bismuth citrate as a template and bismuth precursor,which has linear polymeric structure.Based on this,nanocomposite materials with antibiotics or small molecules will be designed through adsorption,filling and chemical bonding.The interactions between bismuth nanomaterials and small molecules will be discussed.The inhibitory activities against H.pylori of bismuth nanomaterials and nanocomposites will be evaluated.Also we will focus on the primary studies on the process of the decomposition of nanocomposites and drug release under a simulated physiological conditions.It can provide a new idea for the research and development of new drugs in the treatment of peptic ulcer disease.

参考文献/References:

[1]Warren J R,Marshall B.Unidentified curved bacilli on gastric epithelium in active chronic gastritis[J].Lancet,1983,1:1273-1275.
[2]Mobley H L,Island M D,Hausinger R P.Molecular biology of microbial urease[J].Microbiol Rev,1995,59:451-480.
[3]孙红哲,张丽,司徒嘉怡.含铋类药物的生物化学和药物化学研究进展[J].中国临床药理学杂志,2002,18:297-301.
[4]蒋琪英,沈娟,钟国清.含铋(III)配合物的合成及其铋的配位性质[J].化学进展,2006,18(12):1634-1645.
[5]贾如宝.绿色金属—铋(Bi) [J].金属世界,1993,5:22-25.
[6]Lambert J R,Midolo P.The actions of bismuth in the treatment of Helicobacter pylori infection [J].Aliment Pharmacol Ther,1997,11(Suppl.1):27-33.
[7]Guo Z J,Sadler P J.Metals in Medicine[J].Angew Chem Int Ed,1999,38:1512-1531.
[8]Blaser M J.Hypotheses on the pathogenesis and natural history of Helicobacter pyloriinduced inflammation[J].Gastroenterology,l992,l02:720-727.
[9]Sun H,Szeto K Y.Binding of bismuth to serum proteins:implication for targets of Bi(III) in blood plasma [J].J Inorg Biochem,2003,94:114-120.
[10]Briand G G,Burford N.Bismuth Compounds and Preparations with Biological or Medicinal Relevance [J].Chem Rev,1999,99:2601-2657.
[11]Sun H,Li H,Mason A B,et al.Nlobe versus Clobe complexation of bismuth by human transferrin [J].Biochem J,1999,337:105-111.
[12]Sadler P J,Li H,Sun H.Unexpectedly Strong Binding of a Large Metal Ion(Bi3+) to Human Serum Transferrin [J].J Biol Chem,1996,271:9483-9489.
[13]Zhang L,Szeto K Y,Wong W B,et al.Interactions of Bismuth with Human Lactoferrin and Recognition of the BiⅢLactoferrin Complex by Intestinal Cells [J].Biochemistry, 2001,41:13281-13287.
[14]符舜.三联疗法治疗Hp阳性溃疡疗效分析[J].中国热带医学,2008,8 (1):61-62.
[15]Kim I S,Lee S K,Park Y M,et al.Physicochemical characterization of poly(Llactic acid) and poly (D,Llactidecoglycolide) nanoparticles with polyethylenimine as gene delivery carrier[J].Int J Pharm,2005,298 (1):255-262.
[16]Pathak P,Meziani M J,Desai T,et al.Nanosizing drug particles in supercritical fluid processing[J].J Am Chem Soc,2004,126 (35):10842-10843.
[17]Grenha A,Seijo B,RemunanLopez C.Microencapsulated chitosan nanoparticles for lung protein delivery[J].Eur J Pharm Sci,2005,25 (45):427-437.
[18]Date A A,P atravale V B.Current strategies for engineering drug nanoparticles[J].Curr Opin Colloid Interface Sci,2004,9(34):222-235.
[19]Ajima K,Yudasaka M,Murakami T,et al.Carbon Nanohorns as Anticancer Drug Carriers[J].Molecular Pharmaceutics,2005,2(6):475-480.
[20]Shao M W,Zhang W,Wu Z C,et al.A templatefree route to Bi2S3 nanoribbons[J].Journal of Crystal Growth,2004,265:318-321.
[21]Lu Q Y,Gao F,Komarneni S.BiomoleculeAssisted Synthesis of Highly Ordered Snowflakelike Structures of Bismuth Sulfide Nanorods[J].J Am Chem Soc,2004,(126): 54-55.
[22]Yang X H,Wang X,Zhang Z D.Facile solvothermal synthesis of single crystalline Bi2S3 nanorods on a large scale[J].Materials Chemistry and Physics,2006,95:95154-157.
[23]Koh Y W,Lai C S,Du A Y,et al.Growth of Bismuth Sulfide Nanowire Using Bismuth[J].Chem Mater,2003,15:4544-4554.
[24]Wu S H,Chen D H.Synthesis of highconcentration Cu nanoparticles in aqueous CTAB solutions[J].J Colloid Interf Sci,2004,273:165-169.
[25]Wang Y,Yang H.Synthesis of CoPt Nanorods in Ionic Liquids[J].J Am Chem Soc, 2005,127:5316-5317.
[26]Wang L,Chen X,Zhan J, et al.Synthesis of Gold Nano and Microplates in Hexagonal Liquid Crystals[J].J Phys Chem B,2005,109:3189-3194.
[27]Nikoobakht B,ElSayed M A.Preparation and Growth Mechanism of Gold Nanorods (NRs) Using SeedMediated Growth Method[J].Chem Mater,2003,15:1957-1962.
[28]Wang L,Wei G,Qi B,et al.Electrostatic assembly of Cu2O nanoparticles on DNA templates[J].Appl Surf Sci,2006,252:2711-2716.
[29]Li W,Jin L,Zhu N Y,et al.Structure of Colloidal Bismuth Subcitrate (CBS) in Dilute HCl: Unique Assembly of Bismuth Citrate Dinuclear Units ([Bi(cit)2Bi]2-)[J].J Am Chem Soc, 2003,125:12408-12409.
[30]Asato E,Katsura K,Mikuriya M,et al.Synthesis,Structure and Spectroscopic Character ization of Bismuth Citrate Compounds and BismuthContaining Ulcer Healing Agent Colloidal Bismuth Subcitrate (CBS) 3.1 Crystal and Solution Structures of K(NH4) [Bi2(cit)2(H2O)2 ](H2O)x (x=2,4) [J]. Inorg Chem,1993,32:5322-5329.
[31]Asato E,Katsura K,Mikuriya M,et al.Synthesis,Structure and Spectroscopic Properties of Bismuth Citrate Compounds and the BismuthContaining UlcerHealing Agent Colloidal Bismuth Subcitrate (CBS) 4.l Crystal Structure and Solution Behavior of a Unique Dodecanuclear Cluster (NH4)12[Bi2O8(cit)8](H2O)10[J]. Inorg Chem 1995,34:2447-2454.
[32]Chen R,So M H,Che C M,et al.Controlled synthesis of high crystalline bismuth sulfide nanorods:using bismuth citrate as a precursor[J].J Mater Chem,2005,15:4540-4545.
[33]Chen R,So M H,Yang J,et al.Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate[J].Chem Comm,2006,21:2265-2267.
[34]谭凤娱,范晓彬,张国亮,等. 碳纳米管的填充[J].化学通报,2006,69:w098.
[35]Becker M L,Fagan J A,Gallant N D,et al.LengthDependent Uptake of DNAWrapped SingleWalled Carbon Nanotubes[J].Adv Mater,2007,19:939-945.
[36]Yanagi K,Miyata Y,Kataura H.Highly Stabilized bCarotene in Carbon Nanotubes[J].Adv Mater,2006,18:437-441.
[37]Okada T,Kaneko T,Hatakeyama R,et al.Electrically triggered insertion of singlestranded DNA into singlewalled carbon nanotubes[J].Chem Phys Lett,2006,417:288-292.
[38]Govindaraj A,Satishkumar B C,Nath M,et al.Metal Nanowires and Intercalated Metal Layers in SingleWalled Carbon Nanotube Bundles[J].Chem Mater,2000,12(1): 202-205.
[39]Kiang C H,Choi J S,Tran T T,et al.Molecular Nanowires of 1 nm Diameter from Capillary Filling of SingleWalled Carbon Nanotubes[J].J Phys Chem B,1999,103(35):7449-7451.
[40]Kim B M,Qian S,Bau H H.Filling Carbon Nanotubes with Particles[J].Nano Lett,2005, 5(5):873-878.
[41]Korneva G,Ye H H,Gogotsi Y,et al.Carbon Nanotubes Loaded with Magnetic Particles[J].Nano Lett,2005,5(5):879-884.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:20080923基金项目:国家自然科学基金项目(20801043),武汉市科技局青年科技晨光计划(200850731376)
作者简介:陈嵘(1973 ),男,湖南长沙人,教授,博士,硕士生导师.研究方向:生物无机化学,纳米材料化学.
更新日期/Last Update: