Asymptotical stability for stationary solutions of a
kind of
predatorprey population model with size structure
stationary solution
; asymptotical stability;center manifold
讨论一类具有大小结构捕食系统模型平衡解的存在问题及其
渐近稳定性.首先,用函数的单调性证明平衡解的存在性;然后,利用
扰动函数的思想讨论平衡解的渐近稳定性;最后,在特殊情况下,讨
论平衡解是二维中心流形.
This paper considered the existence and
asymptotical stability for stationary solutions of
predatorprey population model with size structure.
First, the paper presents a proof of existence of the
stationary solutions by monotone functions. Second, it
is discussed the asymptotical stability of stationary
solutions with pertub functions. At last ,in the
especial case, the paper presents the fact that the
stationary solutions are the twodimensional center
manifold.
[1]Gurtin M E,MacCamy R C. Nonlinear agedependent population dynamics[J].Arch Rational Mech Anal,1974 (54):281300. distributions[J].Appl Math Comput, 2002,131(1):107123. McKendrick equations[J].Appl Math Comput,2004 (56):771777. sizestructured model[J].N A,2005(6):962969. ].数学杂志,2007,27(2):119126. 在唯一性[J].数学杂志,2007,32(6):615622. 及应用[J].武汉工程大学学报,2010,32(5):4548. Systems[M].Berlin:SpringerVerlag,1991:210.
[2]Farkas M. On the stability of stationary age
[3]Farkas J Z.Stability conditions for the nonlinear
[4]Farkas J Z.Stability conditions for a nonlinear
[5]赵景服,刘伟安,肖利芳.一阶捕食-被捕食系统的单调方法[J
[6]肖利芳,刘伟安,赵景服.具有大小结构的捕食系统模型解的存
[7]章社生,何康,苑宁,等.蛋白质空间结构数字特性统计分析
[8]Lawrence Perko.Differential Equations and Dynamical
收稿日期:20101108作者简介:肖利芳(1978),男,
湖北武汉人,讲师,硕士.研究方向:微分方程.