|本期目录/Table of Contents|

[1]陈付龙,纪书国,朱朝霞.增强型QuineMcCluskey算法及其实验[J].武汉工程大学学报,2011,(01):100-103.[doi:10.3969/j.issn.16742869.2011.01.025]
 CHEN Fu long,JI Shu guo,ZHU Zhao xia.Enhanced QuineMcCluskey algorithm and experiment[J].Journal of Wuhan Institute of Technology,2011,(01):100-103.[doi:10.3969/j.issn.16742869.2011.01.025]
点击复制

增强型QuineMcCluskey算法及其实验(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2011年01期
页码:
100-103
栏目:
机电与信息工程
出版日期:
2011-01-30

文章信息/Info

Title:
Enhanced QuineMcCluskey algorithm and experiment
文章编号:
16742869(2011)01010004
作者:
陈付龙1纪书国2朱朝霞3
1.安徽师范大学计算机科学与技术系,安徽 芜湖 241000;2.滁州实验中学,安徽 滁州 239000;
3.长江大学计算机科学学院,湖北 荆州 434023
Author(s):
CHEN Fulong1 JI Shuguo2 ZHU Zhaoxia3
1.Department of Computer Science and Technology, Anhui Normal University,Wuhu 241000, China;
2.Chuzhou Experimental High School, Chuzhou 239000, China;
3.College of Computer Science, Yangtze University, Jingzhou 434023, China
关键词:
QuineMcCluskey算法逻辑函数逻辑化简
Keywords:
QuineMcCluskey algorithm logic function logic optimization
分类号:
TP302.2
DOI:
10.3969/j.issn.16742869.2011.01.025
文献标志码:
A
摘要:
传统的QuineMcCluskey算法第一步多从只拥有最小项的真值表开始,而真值表中的最小项数目是算法时间复杂度的最重要因素,数目越大,算法完成需要的时间越多.采用增强QuineMcCluskey算法,对真值表大小进行控制,利用更多归约规则,从而减少算法执行时间.
Abstract:
In the traditional QuineMcCluskey algorithm, a truth table including only minterms is the input data. The number of minterms is the most important factor of the algorithm’s time complexity. The greater the number, the more time the algorithm needs to complete. In this paper, an enhanced QuineMcCluskey algorithm takes a truth table in smaller size and makes use of more reduction rules to reduce the execution time.

参考文献/References:

[1]Predko Michael , Predko Myke.Digital electronics demystified[M]. New York: McGrawHill, 2004.
[2]张天瑜.数字电视译码电路中改进型欧几里德算法[J].武汉工程大学学报,2009,31(12):7378.
[3]Karnaugh Maurice.The map method for synthesis of combinational logic circuits[J].Transactions of American Institute of Electrical Engineers part I,1953,72(9):593599.
[4]McCluskey E J. Minimization of boolean tunctions[J].The Bell System Technical Journal,1956:14171444.
[5]McCluskey E J. Introduction to the theory of switching circuits[M].New York:McGrawHill,1965.
[6]Popov Andrey, Filipova Krasimira.Genetic algorithms synthesis of finite state machines[C]//27th International Spring Seminar on Electronics Technology:Meeting the Challenges of Electronics Technology Progress.Bankya, Bulgaria,IEEE,2004,3:388392.
[7]Fier Petr. Minimization of boolean functions[D].MS. Thesis of Czech Technical University,2002.
[8]Rudell Richard L.Multiplevalued minimization for PLA synthesis[J].IEEE Trans.on CAD,1987,6(5):725750.
[9]邱建林,王波,刘维富.大变量多输出逻辑函数实质项识别算法[J].计算机工程,2007,33(17):5759.
[10]胡国元,胡婧,朱雄伟,等.显微数码互动实验室系统在微生物实验教学中的应用[J].武汉工程大学学报,2010,32(10):107110.
[11]庄芸,李晖.软件进程分解方法模式[J].武汉工程大学学报,2010,32(11):9193.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:20101122基金项目:国家自然科学基金(60773223);安徽省高校青年教师科研基金项目(2008JQ1057);安徽省高校自然科学研究重点项目(KJ2010A148)作者简介:陈付龙(1978),男,安徽霍邱人,副教授,博士.研究方向:嵌入式系统.
更新日期/Last Update: