|本期目录/Table of Contents|

[1]胡双强,刘治田*,胡钊,等.塑料太阳能电池研究进展[J].武汉工程大学学报,2011,(06):6-15.[doi:10.3969/j.issn.16742869.2011.06.002]
 HU Shuangqiang,LIU Zhitian,HU Zhao,et al.Research progress of plastic solar cells[J].Journal of Wuhan Institute of Technology,2011,(06):6-15.[doi:10.3969/j.issn.16742869.2011.06.002]
点击复制

塑料太阳能电池研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2011年06期
页码:
6-15
栏目:
资源与土木工程
出版日期:
2011-07-30

文章信息/Info

Title:
Research progress of plastic solar cells
文章编号:
16742869(2011)06000610
作者:
胡双强刘治田*胡钊伍双全张驰杨宝龙
武汉工程大学材料科学与工程学院,湖北 武汉 430074
Author(s):
HU ShuangqiangLIU ZhitianHU ZhaoWU ShuangquanZHANG CiYANG Baolong
School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430074, China
关键词:
塑料太阳能电池体异质结光电转换效率
Keywords:
plastic solar cells bulk heterojunction conversion efficiency
分类号:
TU528
DOI:
10.3969/j.issn.16742869.2011.06.002
文献标志码:
A
摘要:
介绍了塑料太阳能电池的工作原理,综述了近几年不同类型的给体材料的性能及其光电转换效率,并简要介绍了塑料太阳能电池所面临的问题和挑战及其解决途径.
Abstract:
Plastic solar cells based on the blend film of conjugated polymer donor and soluble fullerene derivative acceptor(bulk heterojunction), have attracted widespread academic and industrial attention currently.This article reviewed the mechanism of solar cells and the progress of the donor materials and their conversion efficiency in recent years and discussed severa1 fundamental issues and the future development.

参考文献/References:

[1]Chapin D M, Fuller C S, Pearson G L. A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power[J]. Journal of Applied Physics, 1954, 25(5): 676677.
[2]Tang C W. Twolayer organic photovoltaic cell[J]. Applied Physics Letters, 1986, 48(2): 183185.
[3]Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced Electron Tranfser from a Conductiong polymer to Buckminsterfullerene[J]. Science, 1992, 258: 14741476.
[4]Yu G, Gao J, Hummelen J C,et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donoracceptor heterojunctions[J]. Science, 1995, 270: 17891791.
[5]Liang Y Y, Yu L P. A New Class of Semiconducting Polymers for Bulk Heterojunction Solar Cells with Exceptionally High Performance[J]. Acc Chem Res, 2010, 43(9), 1227–1236.
[6]Hou J H, Zhang S Q.Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells[J]. J Am Chem Soc, 2009, 131(43):15586–15587.
[7]Peet J, Kim J Y, Coates N E, et al. Efficiency enhancement in lowbandgap polymer solar cells by processing with alkane dithiols[J]. Nature Materials, 2007, 6(7): 497500.
[8] Karg S,Riess W,Dyakonov V,et al.Electrical and optical characterization of poly(phenylenevinylene)light emitting diodes[J].Synth Met,1993,54(13):427433.
[9]Mo Y Q, Huang J, Jiang J X, et al. Influence of traces of water on the synthesis and electroluminescence properties of poly(2methoxy, 5(2 ’ethylhexyloxy)1,4phenylene vinylene)[J]. Chinese Journal of Polymer Science, 2002, 20(5):461465.
[10]Mozer A J, Denk P, Scharber M C, et al. Novel regiospecific MDMOPPV copolymer with improved charge transport for bulk heterojunction solar cells[J]. J Phys Chem B, 2004,108:5235–5242.
[11]Wang L, Liu Y, Jiang X,et al. Enhancement of Photovoltaic Characteristics Using a Suitable Solvent in Hybrid Polymer/Multiarmed CdS Nanorod Solar Cells[J]. J Phys Chem C, 2007, 111: 9538–9542.
[12]Shaheen S E, Brabec B J, Sariciftci N S. 2.5% efficient organic plastic solar cells [J]. Appl Phys Lett,2001(78): 841 843.
[13]Christoph J B, Shaheen S E, Christoph W, et al. Effect of LiF/metal electrodes on the performance of plastic solar cells[J].Appl Phys Lett, 2002(80):12881290.
[14]Jeroen K J, Duren V, Yang X N, et al. Relating the Morphology of Poly(pphenylene vinylene)Methanofullerene Blends to SolarCell Performance[J]. Adv Funct Mater, 2004(14): 425.
[15]Hoppe H, Niggemann M, Christoph W, et al. Nanoscale morphology of conjugated polymer/fullerenebased bulkheterojunction solar cells[J]. Advanced Functional Materials, 2004,14(10): 10051011.
[16]Wienk M M, Kroon J M, Verhees W J H, et al. Efficient methano[70]fullerene/MDMOPPV bulk heterojunction photovoltaic cells[J].Angew Chem Int Ed, 2003(42): 3371 3375.
[17]Keisuke T, Yuya S, Kazuhito H. Polymer Photovoltaic Devices Using Fully Regioregular Poly[(2methoxy5(3′,7′dimethyloctyloxy))1,4phenylenevinylene][J].J Phys Chem C, 2008,112(23):8507.
[18] Zhou Q M, Zheng L P, Sun D K, et al. Efficient polymer photovoltaic devices based on blend of MEHPPV and C60 derivatives[J]. Synth Met, 2003(135/136): 825826.
[19]Tan Z A, Yang C H, Zhou E J. Performance improvement of polymer solar cells by using a solution processible titanium chelate as cathode buffer layer[J]. Applied Physics Letters, 2007,91(2):13.
[20]Bunz U H F.Poly(aryleneethynylene)s:Syntheses,Properties, Structures,and Applications[J].Chem Rev,2000,100(4):16051644.
[21]AlIbrahima M, Konkina A, Roth H K, et al.Phenyleneethynylene/phenylenevinylene hybrid polymers: optical and electrochemical characterization, comparison with poly[2methoxy5(3′,7′dimethyloctyloxy)1,4phenylene vinylene] and application in flexible polymer solar cells [J].Thin Solid Films,2005,474(1/2):201210.
[22]Ashraf R S, Shahid M, Klemm E, et al.Thienopyrazine Based LowBandgap Poly(heteroa ryleneethynylene)s for Photovoltaic Devices[J]. Macromol Rapid Commun, 2006(27): 1454–1459.
[23] Yin C H, Schubert M, Bange S, et al.Tuning of the ExcitedState Properties and Photovoltaic Performance in PPVBased Polymer Blends[J]. J Phys Chem C, 2008(112): 14607–14617.
[24]Kietzke T, Egbe Daniel A M, Hoerhold H, et al. Comparative Study of M3EHPPVBased Bilayer Photovoltaic Devices[J].Macromolecules,2006, 39(12): 40184022.
[25]Dyakonov V. Mechanisms controlling the efficiency of polymer solar cells[J]. Applied Physics A: Materials Science & Processing,2004,79(1):2125.
[26]Zou Y P, Tan Z A, Huo L J, et al. A phenylenevinylenethiophenePhenyleneethynylene copolymer: synthesis, characterization, and photovoltaic properties[J].Polymers for Advanced Technologies,2008,19(7):865871.
[27]Hou J H,Yang C H, Qiao J,et al. Synthesis and photovoltaic properties of the copolymers of 2methoxy5(2′ethylhexyloxy)1,4phenylene vinylene and 2,5thienylenevinylene[J]. Synth Met, 2005,150(3):297.
[28]Huo L J, Hou J H,He C,et al,Synthesis characterization and of photovoltaic properties poly{[1 prime,4 primebis(thienylvinyl)]2methoxy5(2 primeethylhexyloxy)1,4phenylenevinylene }[J].Synth Met,2006,156(2/3/4):276.
[29]Pei J,Yu W L, Ni J,et al.Thiophenebased conjugated polymers for lightemitting diodes: effect of aryl groups on photoluminescence efficiency and redox behavior,[J].Macromolecules, 2001(34): 72417248.
[30]Groenendaal L B, Jonas F,Freitag D, et al.Poly(3,4ethylenedioxythiophene) and its derivatives: past, present, and future,[J].Adv Mater, 2000,12(7): 482494.
[31] Kline R J,McGehee M D,Kadnikova E N,et al.Controlling the FieldEffect Mobility of Regioregular Polythiophene by Changing the Molecular Weight [J].Adv Mater,2003,15(18):15191522.
[32]Kline R, McGehee M D, Kadnikova E N,et al.Dependence of Regioregular Poly(3hexylthiophene) Film Morphology and FieldEffect Mobility on Molecular Weight[J].Macromolecules,2005,38(8):33123319.
[33]Nakamura J,Murata K,Takahashl K. Relation between carrier mobility and cell performance in bulk heterojunction solar cells consisting of soluble polythiophene and fullerene derivatives[J].Appl Phys Lett,2005,87(13):13210 5.
[34]Huang J S,Li G,Yang Y.Influence of composition and heattreatment on the charge transport properties of poly(3hexylthiophene) and[6,6]phenyl C61butyric acid methyl ester blends[J].Appl Phys Lett,2005,87(11):112105.
[35]Koppe M,Scbarber M,Brabec C. Polyterthiophenes as Donors for Polymer Solar Cells[J].Adv Funct Mater,2007,17(8):13711376.
[36]Sivula K,Luscombe C K,Thompson B C,et al.Enhancing the Thermal Stability of Polythiophene:Fullerene Solar Cells by Decreasing Effective Polymer Regioregularity[J].J Am Chem Soc,2006,128(43):1398813989.
[37]Wang G M, Moses D, Heeger A J,et al. Poly(3hexylthiophene) fieldeffect transistors with high dielectric constant gate insulator[J].Journal of Applied Physics, 2004, 95(1): 316322.
[38]Chirvase D, Chiguvare Z, Knipper M, et al. Temperature dependent characteristics of poly(3 hexylthiophene)fullerene based heterojunction organic solar cells[J].J Appl Phys,2003(93):33763383.
[39]UladzimirZ, Tobias E, Gerhard G. Relation between absorption and crystallinity of poly(3hexylthiophene)/fullerene films for plastic solar cells[J].Chemical Physics Letters,2006, 418(4/5/6): 347350.
[40]AlIbrahim M, Roth H K, Schroedner M. The influence of the optoelectronic properties of poly(3alkylthiophenes) on the device parameters in flexible polymer solar cells[J].Organic Electronics,2005, 6(2):6577.
[41]Zhao G J, He Y J, Li Y F. 6.5% Efficiency of Polymer Solar Cells Based on poly(3hexylthiophene) and IndeneC60 Bisadduct by Device Optimization[J].Advanced Materials,22(39):4355–4358.
[42] Li G, Yao Y, Yang Y, et al. Highefficiency solution processable polymer photovoltaic cells by selforganization of polymer blends[J]. Nature Materials,2005(4): 864 868.
[43]Sivula K, Luscombe C K, Thompson B C, et al. Enhancing the Thermal Stability of Polythiophene:Fullerene Solar Cells by Decreasing Effective Polymer Regioregularity[J]. J Am Chem Soc,2006(128):13988–13989.
[44]Hou J, Tan Z, Yan Y, et al. Synthesis and Photovoltaic Properties of TwoDimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains[J]. J Am Chem Soc, 2006(128):4911–4916.
[45]Murphy A R, Liu J S. Synthesis, Characterization, and FieldEffect Transistor Performance of CarboxylateFunctionalized Polythiophenes with Increased Air Stability[J]. Chem Mater, 2005(17): 48924899.
[46]Li Y F, Zou Y P. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility[J].Advanced Materials, 2008, 20(15): 29522958.
[47]何有军,李永舫.聚合物太阳电池光伏材料[J]. 化学进展,2009, 21(11): 23032318.
[48]Hou Jian Hui,Yang Chun He,Li Yong Fang. Synthesis of regioregular sidechain conjugated polythiophene and its application in photovoltaic solar cells[J].Synthetic Metals,2005,153(1/2/3): 9396.
[49]Zhou Er Jun, Hou Jian Hui, Yang Chun He. Synthesis and properties of polythiophenes with conjugated sidechains containing carboncarbon double and triple bonds[J]. Journal of Polymer Science, Part A:Polymer Chemistry,2006, 44(7): 22062214.
[50]Hou Jian Hui,Yang Chun He, He Chang. Poly[3(5octylthienylenevinyl)thiophene]:A sidechain conjugated polymer with very broad absorption band[J].Chemical Communications,2006(8): 871873.
[51]Hou Jian Hui, Huo Li Jun, He Chang. Synthesis and absorption spectra of poly[3(phenylenevinyl)thiophene]s with conjugated side chains[J]. Macromolecules,2006, 39(2): 594603.
[52]Zhou Er Jun, Tan Zhan Ao, Huo Li Jun. Effect of branched conjugation structure on the optical, electrochemical, hole mobility, and photovoltaic properties of polythiophenes[J]. The journal of physical chemistry B,2006, 110(51): 2606226067.
[53]Hou Jian Hui, Tan Zhan Ao, Yan Yong. Synthesis and Photovoltaic Properties of TwoDimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains[J]. Journal of the American Chemical Society,2006, 128(14): 49114916.
[54]Wang E G, Wang L, Lan L F, et al. Highperformance polymer heterojunction solar cells of a polysilafluorene derivative[J]. Applied Physics Letters, 2008, 92(3):13.
[55]Blouin N, Michaud A, Leclerc M. A lowband gap poly(2,7carbazole) derivative for use in highperformance solar cells[J]. Advanced Materials, 2007, 19(17): 22952300.
[56]Zhou Qing Mei, Hou Qiong, Zheng Li Ping, et al. Fluorenebased low bandgap copolymers for high performance photovoltaic devices[J]. Appl Phys Lett, 2004,84(10):16531655.
[57]Andersson L M, Inganas O. Acceptor influence on hole mobility in fullerene blends with alternating copolymers of fluorene[J]. Applied Physics Letters, 2006, 88(8): 13.
[58]Zhang F, Lacic S, Svensson M,et al. Theoretical models and experimental results on the temperature dependence of polyfluorene solar cells[J]. Solar Energy Materials and Solar Cells, 2006, 90(11): 16071614.
[59]Slooff L H, Veenstra S C, Kroon J M, et al. Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling[J]. Applied Physics Letters, 2007, 90(14): 143506.
[60]Muhlbacher D, Scharber M, Morana M,et al. High photovoltaic performance of a lowbandgap polymer[J]. Advanced Materials,2006, 18(21): 28842889.
[61]Lee J K,Ma W L,Heeger A J, et al. Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells[J]. Journal of the American Chemical Society, 2008, 130(11): 36193623.
[62]Nicolas B, Alexandre M. Toward a Rational Design of Poly(2,7Carbazole) Derivatives for Solar Cells[J]. J Am Chem Soc, 2008(130): 732742.
[63]Li L G, Lu G H, Yang X N, et al. Progress in polymer solar cell[J]. Chinese Science Bulletin, 2007, 52(2): 145158.
[64]Mayer A C, Scully S R, Hardin B E, et al. Polymerbased solar cells[J]. Materials Today, 2007, 10(11): 2833.
[65]Krebs F C, Spanggaard H. Significant improvement of polymer solar cell stability[J]. Chemistry of Materials, 2005, 17(21): 52355237.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:20110223基金项目:国家自然科学基金(No.51003080);湖北省教育厅重点科研项目(D20111502);新型显示技术及应用集成教育部重点实验室开放基金(No. P201002)作者简介:胡双强(1981),男,湖北麻城人,硕士研究生.研究方向:共轭聚合物的合成. 指导老师:刘治田,男,教授,博士.研究方向:有机/聚合物光电功能材料与器件(有机发光二极管、聚合物太阳能电池).*通信联系人第33卷第6期2011年06月武汉工程大学学报J.WuhanInst.Tech.Vol.33No.6Jun.2011
更新日期/Last Update: