[1]Hirokawa Y, Tanaka T. Volume phase transition in a nonionic gel[J]. J Chem Phys,1984, 81: 63796380.
[2]Li Z Q, Guo X L, Matsushita S,et al. Differentiation of cardiospherederived cells into a mature cardiac lineage using biodegradable poly(Nisopropylacrylamide) hydrogels[J]. Biomaterials 2011, 32:32203232.
[3]Censi R, Fieten PJ, di Martino P, Hennink WE, et al. In Situ Forming Hydrogels by Tandem Thermal Gelling and Michael Addition Reaction between Thermosensitive Triblock Copolymers and Thiolated Hyaluronan[J]. Macromolecules,2010, 43: 57715778.
[4]Wang F, Li Z Q, Khan M, et al. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers[J]. Acta Biomater 2010, 6, 19781991.
[5]Li Z Q, Wang F, Roy S, et al. Injectable, Highly Flexible, and Thermosensitive Hydrogels Capable of Delivering Superoxide Dismutase[J]. Biomacromolecules 2009, 10, 33063316.?
[6]Wu D Q, Qiu F, Wang T, et al. Toward the Development of Partially Biodegradable and Injectable Thermoresponsive Hydrogels for Potential Biomedical Applications[J]. ACS Appl Mater Inter 2009, 1, 319327.
[7]Mano J F. Stimuliresponsive polymeric systems for biomedical applications[J]. Adv Eng Mater 2008, 10, 51552.
[8]Guan J J, Hong Y, Ma Z W, et al. Proteinreactive, thermoresponsive copolymers with high flexibility and biodegradability[J]. Biomacromolecules 2008, 9, 12831292.
[9]Bae J W, Go D H, Park K D. Thermosensitive chitosan as an injectable carrier for local drug delivery[J]. Macromol Res 2006, 14, 461465.
[10]Kang G D, Cheon S H, Khang G, et al. Thermosensitive poly(organophosphazene) hydrogels for a controlled drug delivery[J]. Eur J Pharm Biopharm 2006, 63, 340346.
[11]Yoshida T, Aoyagi T, Kokufuta E, et al. Newly designed hydrogel with both sensitive thermoresponse and biodegradability[J]. J Polym Sci Part A: Polym Chem. 2003, 41, 779787.