[1]Einstein A, Podolsky B, Rosen N. Can Quantum Mechanical Description of Physical Reality Be Considered Complete? [J]. Phys Rev, 1935, 47:777 – 780.
[2]曾谨言. 量子力学(卷II)[M].3版. 北京:科学出版社,2000: 35 – 36, 46.
[3]Bohm D. Quantum Theory [M]. New York:Printice Hall, 1951.
[4]Bell J S. On the einsteinpodolskyrosen paradox [J]. Physics, 1964,1(3):195 – 200.
[5]Clauser J F, Horne M A S A, Holt R A. Proposed Experiment to Test Local HiddenVariable Theories [J]. Phys Rev Lett, 1969, 23(15): 880 – 884.
[6]Aspect A, Grangier P, Roger G. Experimental Tests of Realistic Local Theories via Bell’s Theorem[J]. Phys Rev Lett, 1981, 47(7): 460 – 463.
[7]Aspect A, Grangier P, Roger G. Experimental Realization of EinsteinPodolskyRosenBohm Gedanken Experiment: A New Violation of Bell’s Inequalities [J]. Phys Rev Lett, 1982, 49(2): 91 – 94
[8]Reid M D. Demonstration of the EinsteinPodolskyRosen Paradox Using Nondegenerate Parametric Amplification[J]. Phys Rev A,1989 40(2): 913 – 923.
[9]Ou Z Y, Pereira S F, Kimble H J, et al. Realization of the EinsteinPodolskyRosen paradox for Continuous Cariables[J]. Phys Rev Lett, 1992, 68(25): 3663 – 3666.
[10]Vaidman L. Teleportation of Quantum States [J]. Phys Rev A, 1994,49(2):1473 – 1476.
[11]Braunstein S L, Kimble H J. Teleportation of Continuous Quantum Variables[J]. Phys Rev Lett, 1998, 80(4):869 – 872.
[12]Braunstein S L, Loock P. Quantum Information with Continuous Variables [J]. Rev Mod Phys, 2005, 77: 513 – 577.
[13]Lloyd S, Braunstein S L. Quantum Computation over Continuous Variables [J]. Phys Rev Lett, 1999,82(8): 1784 – 1787.
[14]荆杰泰, 张俊香. 结合双模压缩真空态对EPR“佯谬”与量子力学几率波的统一性解释[J]. 量子光学学报,2002, 8 (2) : 47 – 50.
[15]赵超樱, 谭维翰. 在非简并参量放大系统中EPR佯谬的最佳实现[J]. 物理学报, 2006, 55(1) : 19–23.
[16]Howell J C, Bennink R S, Bentley S J, et al. Realization of the EinsteinPodolskyRosen Paradox Using Momentum and PositionEntangled Photons from Spontaneous Parametric Down Conversion [J]. Phys Rev Lett, 2004, 92(21): 210403.
[17]关洪.量子力学的基本概念 [M]. 北京:高等教育出版社,1999:235 – 237.
[18]Ni G J, Guan H, Zhou W M, et al. Antiparticle in the Light of EinsteinPodolskyRosen Paradox and Klein Paradox [J]. Chinese Phys Lett, 2000,17(6):393 – 395.
[19]倪光炯,陈苏卿.高等量子力学[M].2版.上海: 复旦大学出版社, 2004:378 – 379.
[20]刘雅超, 黎明. 相对论量子力学方程求解的新方案[J]. 武汉工程大学学报, 2010,32 (7) : 107 – 110.