|本期目录/Table of Contents|

[1]杨义军,洪汉玉*,章秀华,等.重轨生产线钢坯字符识别方法[J].武汉工程大学学报,2012,(05):64-67,72.[doi::103969/jissn16742869201205016]
 YANG Yi\|jun,HONG Han\|yu,ZHANG Xiu\|hua,et al.Recognition of billet character in heavy rail production line[J].Journal of Wuhan Institute of Technology,2012,(05):64-67,72.[doi::103969/jissn16742869201205016]
点击复制

重轨生产线钢坯字符识别方法(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2012年05期
页码:
64-67,72
栏目:
机电与信息工程
出版日期:
2012-05-31

文章信息/Info

Title:
Recognition of billet character in heavy rail production line
文章编号:
16742869(2012)05006404
作者:
杨义军1洪汉玉1*章秀华1王逸文2俞喆俊1
1.武汉工程大学图像处理与智能控制实验室,湖北 武汉 430205;
2.北京科技大学数理学院,北京 100083
Author(s):
YANG Yi\|jun1 HONG Han\|yu1 ZHANG Xiu\|hua1 WANG Yi\|wen2 YU Zhe\|jun1
1.Laboratory of Image Processing and Intelligent Control, Wuhan Institute of Technology, Wuhan 430205, China;
2.School of mathematics and physics, University of Science Technology Beijing, Beijing 100083, China
关键词:
字符定位字符切分字符识别
Keywords:
character location character segmentation character recognition
分类号:
TP391
DOI:
:103969/jissn16742869201205016
文献标志码:
A
摘要:
针对重轨生产线钢坯支支跟踪的需求,研究了一种基于计算机视觉的钢坯字符识别方法.该识别方法对在线采集到的钢坯字符图像采用基于最大类间方差的多级分割滤波与聚类处理突出字符目标区域,从而精准定位出钢坯字符;采用基于智能多代理者的切分算法来完成钢坯字符的精确切分;采用模板匹配与结构特征识别相结合的多级识别方法来正确识别出钢坯字符.实验结果表明所提出的算法能正确快速地识别出钢坯号字符.
Abstract:
To meet the demand of tracking each billet in the heavy rail production line, a billet character recognition algorithm based on computer vision was proposed. Firstly, multistage segmentation filtering based on OTSU and clustering processing was adopted to locate the billet character precisely. Secondly, the segmentation algorithm based on intelligent multi\|agent was used to divide the billet character accurately. Lastly, the multilevel recognition algorithm incorporation the template matching and feature recognition was used to recognize billet character correctly. The experimental results show that the proposed algorithm in this paper can recognize the billet character correctly and quickly.

参考文献/References:

[1]洪汉玉. 现代图像图形处理与分析[M]. 武汉: 中国地质大学出版社,2011.
  [2]阚伟, 朱秋煜. 一种新的用于集装箱字符的识别方法[J]. 东北师大学报:自然科学版, 2000, 32(4): 20-24.
  [3]柴治, 陶青川, 余艳梅,等. 一种快速实用的车牌字符识别方法[J]. 四川大学学报:自然科学版, 2002, 39(3): 465-468.
  [4]郑胜林, 潘保昌, 徐杜, 等. IC卡在线检测的码号定位分割方法研究[J]. 中国图象图形学报, 2004, 9(12): 1430-1436.
  [5]何明霞, 李萌, 宁福星. 基于字符识别的轮胎型号识别系统[J]. 橡胶工业, 2009, 4(56): 237-241.
  [6]俞喆俊, 洪汉玉, 章秀华, 等. 生产线复杂场景钢坯检测识别的定位方法研究[J]. 光电工程, 2012, 39(1): 54-61.
  [7]Chen T S, Chen M C. A New Search Engine for Chinese Document Image Retrieval Based on Chinese Char\|acter Segmentation Features[J]. International Journalof Computer Processing of Oriental Languages, 2002, 15(4): 417-431.
  [8]Keunhwi K, SungHoo C, Pil Y J, et al. Character segmentation and recognition algorithm for various text region images[J]. Transactions of the Korean Institute of Electrical Engineers, 2009, 58(4): 806-816.
  [9]Jung C, Liu Q, Kim J. A new approach for text segmentation using a stroke filter[J]. Signal Processing, 2008, 88(7): 1907-1916.
  [10]Wooldridge M, Jennings N R, Kinny D. The Gaia Methodology for Agent-Oriented Analysis and Design[J]. Autonomous Agents and Multi-Agent Systems, 2000, 3(3): 285-312.
  [11]Wang D P, Li J Z, Fang S Q. Research and realization of print form character recognition system based on characteristic value[J]. Procedia Engineering, 2011(15):2196-2200.
  [12]Takahashi Y, Tanaka H, Suzuki A, et al. License plate recognition using gray image template matching with noise reduction filters and character alignment[J]. Systems and Computers in Japan, 2007, 38(3): 49-61.
  [13]Sternby J, Morwing J, Andersson J, et al. On\|line Arabic handwriting recognition with templates[J]. Pattern Recognition, 2009, 42(12): 3278-3286.
  [14]Namane A, Guessoum A, Djebari M, et al. Hopfield\|multilayer\|perceptron serial combination for accurate degraded printed character recognition[J]. Optical Engineering, 2006, 45(8):087,201.
  [15]Shelke S, Apte S. A multistage handwritten Marathi compound character recognition scheme using neural networks and wavelet features[J]. International Journal of Signal Processing:Image Processing and Pattern Recognition, 2011, 4(1): 81-94.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:20120427基金项目:国家自然科学基金项目(50975211,61175013);武汉市科技攻关项目(200810321164);湖北省自然科学基金(2010CDB11107);武汉市学科带头人计划项目(Z201051730001)作者简介:杨义军(1986-),男,湖北天门人,硕士研究生.研究方向:图像处理与智能控制.指导老师:洪汉玉,男,教授,博士,博士研究生导师.研究方向:图像处理与智能控制
更新日期/Last Update: