|本期目录/Table of Contents|

[1]张彦铎,汪敏敏,鲁统伟.改进的二维经验模式分解方法[J].武汉工程大学学报,2013,(04):61-65.[doi:103969/jissn 16742869201304014]
 ZHANG Yan duo,WANG Min min,LU Tong wei.Decomposition method of improved twodimensional empirical mode[J].Journal of Wuhan Institute of Technology,2013,(04):61-65.[doi:103969/jissn 16742869201304014]
点击复制

改进的二维经验模式分解方法(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2013年04期
页码:
61-65
栏目:
机电与信息工程
出版日期:
2013-04-30

文章信息/Info

Title:
Decomposition method of improved twodimensional empirical mode
文章编号:
16742869(2013)04006105
作者:
张彦铎12汪敏敏12鲁统伟12
1. 武汉工程大学计算机科学与工程学院,湖北 武汉 430074;2.智能机器人湖北省重点实验室,湖北 武汉 430074
Author(s):
ZHANG Yanduo12 WANG Minmin12 LU Tongwei12
1.School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430074, China;2.Hubei Province key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430074, China
关键词:
二维经验模态分解内在模式函数边界效应筛分条件
Keywords:
twodimensional empirical mode decomposition intrinsic mode function boundary effects sifting condition
分类号:
TP391.4
DOI:
103969/jissn 16742869201304014
文献标志码:
A
摘要:
为了解决图像处理中应用到的传统二维经验模式分解算法存在边界效应和过度分解的问题,提出了一种改进的二维经验模式分解算法.该算法首先对原始图像的边界进行延拓处理,在图像信号的边界处增加一部分数据;然后对处理后的图像使用传统的二维经验模式分解方法进行图像筛分,筛分截止后对每个筛分过度的内在模式函数增加一个对应的补偿量.应用改进的二维经验模式分解算法对图像进行了处理,计算了处理后得到的重构图与原图的标准差.实验结果表明,改进的二维经验模式分解算法消除了边界效应,也解决了图像分解过度的问题.重构图与原图像的标准差很小,证明了重构图与原图的图像灰度波动很小即图像吻合得很好,并且由于处理边界问题时附加的图像信息并不多乃至计算量小,使处理简单易行,论证了改进的二维经验模式分解算法在图像处理中的可行性.
Abstract:
To solve boundary effects and excessive decomposition of traditional twodimensional empirical mode decomposition algorithm in image processing, an improved twodimensional empirical mode decomposition algorithm was proposed. Firstly, the boundary of the original image was extended to increase the data in the boundary part of the image signal.Secondly, processed image was screened using decomposition algorithm of traditional twodimensional empirical mode; Finally, a corresponding compensation was added for each intrinsic mode function which was excessively screened. The improved twodimensional empirical mode decomposition algorithm was applied to processing image, and standard deviation between reconstruction image and original image was calculated. The results show that the improved twodimensional empirical mode decomposition algorithm eliminates boundary effects, solves the problem of image’s excessive decomposition. The standard deviation between reconstruction image and original image is small, so the conclusion is proved that the fluctuation of image grayscale between reconstruction image and original image is small and two images are in agreement with each other. So that additional image information for dealing with boundary issue is not much, computation is small and treatment is simple. The improved twodimensional empirical mode decomposition algorithm in image processing is feasible.

参考文献/References:

[1]Norden E Huang, Zheng Shen, Steven R Long, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis\[J\]. Proceedings of the Royal Society Lond A , 1998 (454) :903995.[2]Nunes J C, Bouaoune Y, Delechelle E, et al. Image analysis by bidimensional empirical mode decomposition\[J\]. Image Vision Computing,2003(21): 10191026.[3]陈扬,苏义鑫,刘鲤晞. 基于偏微分方程的条码预处理\[J\].武汉工程大学学报,2009,31(5):9092.[4]黄大吉,赵进平,苏纪兰,等.希尔伯特黄变换的端点延拓\[J\].海洋学报,2003,25(1): 257263.[5]胡爱军,唐贵基,安连锁.HilbertHuang变换边界问题处理方法研究\[J\].机械强度,2008,30(5):739743.[6]程圣军,于德介,杨宇. 基于支持矢量回归机的HilbertHuang变换端点效应问题的处理方法\[J\]. 机械工程学报,2006,42(4):2331.[7]张郁山,梁建文,胡聿贤. 应用自回归模型处理EMD方法中的边界问题\[J\]. 自然科学进展,2003,13(10):10541059.[8]刘慧婷,程家兴,张旻. 基于多项式拟合算法的EMD端点问题的处理\[J\]. 计算机工程与应用,2004(16):8386.[9]Zhao Jinping. Improvement of the mirror extending in empirical mode decomposition method and the technology for eliminating frequency mixing\[J\]. High Technology Letters, 2002, 8(3): 4047.[10]胡维平,莫家珍,龚英姬,等. 经验模式分解中多种边界处理方法的比较研究.电子与信息学报\[J\].2007,29(6):13941398.[11]葛光涛,桑恩方,刘卓夫,等. 一种新的BEMD筛分停止准则\[J\]. 数据采集与处理,2010,25(2):195200.[12]张合勇,任德明,赵卫疆,等. 图像处理中二维经验模式分解的改进算法\[J\]. 光学学报,2009,29(5):12481253.[13]贺文杰,Bajolet Julien,陈汉新,等. 基于EMD和FFT的齿轮箱故障诊断\[J\]. 武汉工程大学学报,2011,33(1):6570.

相似文献/References:

备注/Memo

备注/Memo:
作者简介:张彦铎(1971),男,黑龙江肇东人,教授,博士.研究方向:人工智能.第35卷第4期2013年04月武汉工程大学学报JWuhanInstTechVol35No4Apr.2013
更新日期/Last Update: 2013-05-18