|本期目录/Table of Contents|

[1]丁克勤,刘关四,魏化中,等.快开式压力容器异型密封圈有限元分析[J].武汉工程大学学报,2013,(08):52-56.[doi:103969/jissn16742869201308010]
 DING Ke\|qin LIU Guan\|si WEI hua\|zhong,SHU An\|qing.Finite element analysis of special\|shaped sealing ring on quick actuating pressure vessel[J].Journal of Wuhan Institute of Technology,2013,(08):52-56.[doi:103969/jissn16742869201308010]
点击复制

快开式压力容器异型密封圈有限元分析(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2013年08期
页码:
52-56
栏目:
机电与信息工程
出版日期:
2013-08-31

文章信息/Info

Title:
Finite element analysis of special\|shaped sealing ring on quick actuating pressure vessel
文章编号:
16742869(2013)08005205
作者:
丁克勤1刘关四2魏化中2舒安庆2
1.中国特种设备检测研究院,北京 100013;2. 武汉工程大学机电工程学院,湖北 武汉 430205
Author(s):
DING Ke\|qin2 LIU Guan\|si1 WEI hua\|zhong1SHU An\|qing1
1. School of Mechanical and EngineeringWuhan Institute of Technology,Wuhan 430205,China;2. China Special Equipment Inspection and Research Institute,Beijing 100013,China
关键词:
有限元快开门异型圈等效应力
Keywords:
finite element quick actuating pressure vessel special\|shaped ring von mises stress
分类号:
TB42
DOI:
103969/jissn16742869201308010
文献标志码:
A
摘要:
密封圈依靠弹性体材料的弹性在初始装配过盈量或预加载荷的作用下实现自密封.为了解决密封圈在快开式压力容器中的泄露问题并改善丁晴橡胶密封圈的抗疲劳破坏性能,采用有限元的方法对快开门的结构进行简化并对其不同间隙、不同硬度的情况进行分析.首先建立几何简化模型,其中材料模型采用Mooney\|Rivlin模型,再分别对硬度为60、70、80、90和间隙为2 mm、3 mm、4 mm的模型进行有限元分析.结果表明:材料的硬度越大,密封圈的变形量越小,硬度为70时的最大等效应力最小,为10.917 MPa;间隙越大,密封圈挤入间隙的体积越大,间隙为2 mm时丁晴橡胶的最大等效应力最小,为11.418 MPa.综合考虑丁晴橡胶的变形回弹、老化、疲劳破坏等因素,选取合适的硬度为70 Hr,合适的间隙为2 mm,在此条件下,既能解决密封圈泄漏问题又能改善它的使用寿命.
Abstract:
To solve the leak problem of seal rings in quick\|opening pressure vessels, and improve fatigue rupture resistance of NBR(nitrile rubber buna) seal rings, the finite element method was used to simplify the quick\|opening structure and analyze the situations of different clearances and hardnesses. Firstly, the simplified model was built and the Mooney\|Rivlin model was used as the material model. Then the models with the hardnesses of 60, 70, 80, 90 and the clearances of 2 mm, 3 mm, 4 mm were taken by finite element analysis. The result shows that greater hardness of materials may lead to less deformation of seal rings and under the hardness of 70, the minimum value of the maximum equivalent stress is 10.917 MPa. Also, the greater clearance may lead to the greater volume of the seal ring squeezing into the clearance, and under the clearance of 2 mm, the minimum value of the maximum equivalent stress of NBR is 11.418 MPa. Comprehensive consideration of deformation resilience, aging and fatigue rupture suggests that NBR with the hardness of 70 and the clearance of 2 mm can be selected as the material of the seal ring; under this condition, the leak problem of seal rings is solved and its service life is improved.

参考文献/References:

\[1\]蔡仁良, 顾伯勤, 宋鹏云. 过程装备密封技术(第二版)\[M\]. 北京:化学工业出版社,2006.CAI Ren\|liang, GU Bo\|qin, SONG Peng\|yun.Sealing technology on process equipment.(second edition) \[M\].BeiJing: Chemical Industry Press, 2006.(in Chinese)\[2\]王江. 橡胶密封圈在回弹过程中的密封性能分析\[J\].强度与环境,2006,33(3):37\|42.WANG Jiang. Rubber seal sealing perfor\|mance in the process of springback analysis \[J\].Structure & Environment Engineering, 2006, 33(3) :37\|42.(in Chinese)\[3\]Ferm A.G.Finite Element Analysis of a Valve Stem Seal.Sealing for Automotive \[J\]. Applications,1998(1344):59\|62.(in Chinese)\[4\]刘健, 仇性启, 薄万顺, 等. 橡胶O型圈最大接触应力数值分析\[J\]. 润滑与密封, 2010,35(1):41\|44.LIU Jian,QIU Xing\|qi,BO Wan\|shun,et al.Numerical analysis of the maximum contact stress of the rubber o\|rings\[J\]. Lub\| brication Engineering .2010,35(1):41\|44.(in Chinese)\[5\]胡琦. 液压伺服作动器O型密封圈实验研究与有限元分析\[D\]. 哈尔滨:哈尔滨工业大学,2011:57\|69.Hu Qi.Hydraulic servo actuator O\|ring test and finite element analysis\[D\].Harbin : Harbin institute of technology,2011:57\|69.(in Chinese)\[6\]陈鑫, 吴迪福.大缝隙密封的几种异型截面橡胶密封结构的有限元分析\[J\].强度与环境,2009,36(4):1\|5.CHEN Xin, WU Di\|fu.Analysis of several special shaped section rubber sealing structure in big gap seal using the finite element method\[J\] .Structure & Environment Engineering,2009,36(4):1\|5.(in Chinese)\[7\]Mooney M.A theory of large elastic deformation\[J\].Appl Phys,1940(11):582\|59.

相似文献/References:

[1]孙庆新,陈旭勇*,杨冬波.刚构连续弯板桥空间有限元分析[J].武汉工程大学学报,2009,(05):41.
 SUN Qing xin,CHEN Xu yong,YANG Dong bo.Spatial finite element analysis of reinforced concrete continuous rigidframe curved slab bridges[J].Journal of Wuhan Institute of Technology,2009,(08):41.
[2]胡显燕,陈玮,邓娟,等.大尺度楼盖温度效应分析[J].武汉工程大学学报,2008,(03):44.
 HU Xian yan,CHEN Wei,DENG Juan,et al.Temperature response analysis for largearea slab[J].Journal of Wuhan Institute of Technology,2008,(08):44.
[3]舒安庆,王,魏化中.含腐蚀缺陷燃气管道极限载荷的有限元分析[J].武汉工程大学学报,2008,(02):102.
 SHU An qing,WANG Wei,WEI Hua zhong.Element analysis on limit load of corroded fuel gas pipelines[J].Journal of Wuhan Institute of Technology,2008,(08):102.
[4]肖瑶,郑贤中,周宁波.卫星天线锅盖冲压成形模拟与优化[J].武汉工程大学学报,2011,(09):96.
 XIAO Yao,ZHENG Xianzhong,ZHOU Ningbo.Stamping simulation and optimization of satellite antenna pot[J].Journal of Wuhan Institute of Technology,2011,(08):96.
[5]舒安庆,肖普,丁克勤,等.起重机双钩危险区域强度可靠性分析[J].武汉工程大学学报,2012,(7):45.[doi:103969/jissn16742869201207010]
 SHU An qing,XIAO Pu,DING Ke qin,et al.Assessment of strength reliability for crane double hook based on finite element analysis[J].Journal of Wuhan Institute of Technology,2012,(08):45.[doi:103969/jissn16742869201207010]
[6]张恒星.液化器异形偏心锥有限元应力分析[J].武汉工程大学学报,2012,(8):75.[doi:103969/jissn16742869201208019]
 ZHANG Heng xing.Finite element analysis of devolatilizer abnormity eccentric cone[J].Journal of Wuhan Institute of Technology,2012,(08):75.[doi:103969/jissn16742869201208019]
[7]刘万朋,施哲雄,何荣娥,等.塔设备连接法兰的校核方法研究及应用[J].武汉工程大学学报,2012,(11):73.[doi:103969/jissn16742869201211016]
 LIU Wan peng,SHI Zhe xiong,HE Rong e,et al.Study and application on checking method of tower equipment connecting flanges[J].Journal of Wuhan Institute of Technology,2012,(08):73.[doi:103969/jissn16742869201211016]
[8]何家胜,魏卫,朱晓明,等.含裂纹法兰接管的应力强度因子数值计算[J].武汉工程大学学报,2012,(12):50.[doi:103969/jissn16742869201212012]
 HE Jia sheng,WEI Wei,ZHU Xiao ming,et al.Numerical analysis of stress intensity factor of cracked nozzle flange[J].Journal of Wuhan Institute of Technology,2012,(08):50.[doi:103969/jissn16742869201212012]
[9]何家胜,李超,朱晓明,等.氢腐蚀分层对换热器筒体承载能力的影响[J].武汉工程大学学报,2013,(02):74.[doi:103969/jissn16742869201302016]
 HE jia sheng,LI chao,ZHU xiao ming,et al.Influence of bearing capacity of heat exchanger shell caused by hydrogen corrosion delaminating crack[J].Journal of Wuhan Institute of Technology,2013,(08):74.[doi:103969/jissn16742869201302016]
[10]何家胜,吴其,王彦馨,等.天然气管道带气开孔补强结构的应力分析[J].武汉工程大学学报,2013,(08):57.
 HE Jia\|sheng,WU Qi,WANG Yan\|xin,et al.Stress analysis of reinforcing structure of opening in in\|service natural gas pipelines[J].Journal of Wuhan Institute of Technology,2013,(08):57.

备注/Memo

备注/Memo:
收稿日期:20130512基金项目:国家质检总局科技计划项目(2010QK141)作者简介:丁克勤(1968\|),男,安徽枞阳人,研究员,博士.研究方向:电磁检测技术与仿真、结构健康监测与评估、先进传感技术与仪器以及虚拟仿真与评价等
更新日期/Last Update: 2013-09-07