|本期目录/Table of Contents|

[1]吴和保,李晓微,龙玉阳,等.人工神经网络快速预测蠕墨铸铁的性能[J].武汉工程大学学报,2013,(10):63-67.[doi:103969/jissn16742869201310013]
 WU He\|bao,LI Xiao\|wei,LONG Yu\|yang,et al.Fast prediction of vermicular graphite cast iron property based on Back Propagation neutral network[J].Journal of Wuhan Institute of Technology,2013,(10):63-67.[doi:103969/jissn16742869201310013]
点击复制

人工神经网络快速预测蠕墨铸铁的性能(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2013年10期
页码:
63-67
栏目:
机电与信息工程
出版日期:
2013-11-10

文章信息/Info

Title:
Fast prediction of vermicular graphite cast iron property based on Back Propagation neutral network
文章编号:
16742869(2013)10006305
作者:
吴和保1李晓微1龙玉阳1张亚平1樊自田2蔡安克3董选普2
1.武汉工程大学机电工程学院,湖北 武汉 430074;2.华中科技大学材料科学与工程学院,湖北 武汉 430074;3.中国一拖集团有限公司工艺材料研究所,河南 洛阳 471003
Author(s):
WU He\|bao1LI Xiao\|wei1LONG Yu\|yang1ZHANG Ya\|ping1FAN Zi\|tian2CAI An\|ke3DONG Xuan\|pu2
1. School of Mechanical and Electrical Engineering, Wuhan Institution of Technology, Wuhan 430074, China; 2.School of materials science and engineering of Huazhong University of Science and Technology, Wuhan 430074,China; 3.Technology and Material Research Institute of Yi Tuo Group Co.,Ltd,Luoyang 471003,China
关键词:
神经网络蠕墨铸铁热分析
Keywords:
Back Propagation neural network compacted graphite iron thermal analysis
分类号:
TG255
DOI:
103969/jissn16742869201310013
文献标志码:
A
摘要:
蠕墨铸铁具有优异的力学性能、铸造性能、抗热疲劳和耐磨性能,是大功率柴油发动机缸体的理想合金材料.蠕墨铸铁容易受到生产工艺因素的影响,蠕化率难以控制,必须依靠炉前快速分析技术加以严格控制.以蠕墨铸铁的化学成分和力学性能为研究对象,在大量实验数据的基础上,采用Matlab 软件中的误差反向传播算法神经网络工具箱,通过二次开发建立了一个基于热分析的预测网络,实现蠕墨铸铁性能的炉前化学成分和力学性能的快速预测,并与理化实测数据进行分析对比.结果表明,人工神经网络能充分逼近复杂的非线性系统,准确快速地预测蠕墨铸铁的化学成分和力学性能,有利于蠕墨铸铁的蠕化率、化学成分和力学性能的炉前快速监控,确保蠕化处理效果的稳定性,提高产品质量,降低铸铁的生产成本.
Abstract:
Vermicular Graphite Cast Iron is the ideal alloy for high\|power diesel engine block for its excellent mechanical property, casting performances, thermal fatigue resistance and great wearability. The chemical composition and mechanical properties of Vermicular Graphite Cast Iron were researched. The secondary development which is involved in Back Propagation neural network toolbox of Matlab software was used to set up a thermal analysis predicting network based on experimental data. The rapid prediction of chemical composition and mechanical properties of Vermicular Graphite Cast Iron was achieved through the secondary development. Compared with physical measurement data, the results show that chemical composition and mechanical properties of Vermicular Graphite Cast Iron is quickly and accurately predicted by Back Propagation neural network which is approximate to the complex non\|linear system. So vermicular iron vermicularity, chemical composition and properties of Vermicular Graphite Cast Iron can be rapidly monitored to ensure the stability of the vermicularizing treatment, to improve the product quality and to reduce the cost of production.

参考文献/References:

[1]杨永录,赵志康,朱玉乐,等.蠕墨铸铁缸体试验研究[J].现代铸铁,2006(1):66\|68. YANG Yong\|lu, ZHAO Zhi\|kang, ZHU Yu\|le,et al. Development of Vermicular Iron Cylinder Block[J].Modern cast iron,2006(1):66\|68.(in Chinese)[2]Guesser W, Schroeder T, Dawson S. Production Experience With Compacted Graphite Iron Automotive Components[J]. AFS Transactions, 2001(71): 1211\|1216.[3]Dawson S,Schroeder T. Practical Applications for Compacted Graphite Iron[J]. AFS Transactions,2004(47):129\|127.[4]陈位铭,金胜灿. 蠕墨铸铁CA6110柴油机缸体的试验研究[J].铸造技术,2006(4):341\|343. CHEN Wei ming,JIN Sheng\|can.Experimental Study on Compacted Graphite Iron CA6110 Diesel Engine Cylinder Block[J].Foundry Technology,2006(4):341\|343.(in Chinese)[5]李元松,李新平小波神经网络在高陡边坡位移预测中的应用[J].武汉工程大学学报,2010,32(9):38\|42.LI Yuang\|song,LI Xin\|ping.The application of wavelet neural network on displacement predicting for wigh steep slope[J].Wuhan Institute of Technology,2010,32(9):38\|42.(in Chinese)[6]邱汉泉,陈正德. 中国蠕墨铸铁40年(二)[J]. 中国铸造装备及技术,2006(2):2\|7.QIU Han\|quan,CHEN Zheng\|de.The 40 Years of Vermicular Graphite Cast Iron in China[J].China Foundry Mahinery & Technology,2006(2):2\|7.(in Chinese)[7]李炳华,杜欣. 蠕墨铸铁在柴油机部件上的应用[J].现代铸铁,2007(3):68\|71.LI Bing\|hua,DU Xin. The application of vermicular iron in diesel engine parts[J]. Modern cast iron,2007(3):68\|71.(in Chinese)[8]从爽.面向MATLAB工具箱的神经网络理论与应用 [M].北京:中国科技大学出版社:45\|62.CONG Shuang. Neural network theory and application for MATLAB toolbox[M].Beijing:University of Science and Technology of China Press:45\|62.(in Chinese)[9]夏善木,李大勇.用于铸铁力学性能快速预测的人工神经网络[J].应用科学,2002,20(3):309\|312.XIA Shan\|mu, LI Da\|yong.The Network for Fast Predict ion of Mechanical Properties of Cast Iron[J].Jouranal of applied sciences,2002,20(3):309\|312.(in Chinese)[10]王玉国,李学京.用BP神经网络预测铸铁的性能[J].计算机应用,2006(1):70\|72.WANG Yu\|guo,LI Xue\|jing.Using BP Ar tificial Neutr al Networks to For ecast Proper ties of Cast Iron[J].computer application,2006(1):70\|72.(in Chinese)[11]廖文东.基于BP神经网络蠕墨铸铁性能建模及其应用[D].上海:上海交通大学,2009. LIAO Wen\|dong. Modeing On The Characteristics of Vermicular Graphite Cast Iron and It’s Application Based On The BP Neural Network[D].Shanghai:Shanghai Jiao Tong University,2009.(in Chinese)[12]朱先勇,刘耀辉. 基于BP神经网络的球墨铸铁组织和力学性能预测 [J].湖南大学学报,2007,34(10):74\|77. ZHU Xian\|yong,LIU Yao\|hui. Prediction of the Microst ructural and Mechanical Properties of Pearlite Nodule Cast Iron Based on Bp Neut ral Netw ork[J].Journal of Hunan University,2007,34(10):74\|77.(in Chinese)[13]曾怡丹,曲洁. 基于BP神经网络的铁液碳、硅含量预测 [J].中国铸造装备与技术,2010(6):17\|20. ZENG Yi\|dan,QU Jie. Prediction of Carbon and Silicon Content in Molten Iron Based on BP Neural Networks[J].China Foundry Mahinery & Technology,2010(6):17\|20.(in Chinese)[14]邱东,祁晓钰. 基于神经网络的高炉铁水硅含量预报模型的研究[J].冶金分析,2009,29(2):49\|52. QIU Dong,QI Xiao\|yu.Study on prediction model of silicon content in blast furnace liquid iron based on neural network[J].Metallurgical Analysis,2009,29(2):49\|52.(in Chinese)[15]刘文曾,郭亚辉,蔡安克,等.缸体用蠕墨铸铁生产工艺的研究[J].中国铸造装备与技术,2009(6):37\|39.  LIU Wen\|zeng, GUO Ya\|hui, CAI An\|ke, et al.A Study of Vermicular Graphite Cast Iron Technology to Produce CyHnder Block[J].China Foundry Mahinery & Technology,2009(6):37\|39.(in Chinese)[16]蔡安克,吴和保,夏志全,等.新型蠕化剂加入量对柴油发动机缸体材料蠕墨铸铁的组织与性能的影响[J].中国机械工程,2010(7):868\|871. CAI An\|ke,Wu He\|bao,XIA Zhi\|quan,et al.Effect of New Vermicular Agent on Microstucture and Properties of Compacted Graphite Iron for Diesel Engine Cylinder Block[J].China Mechanical Engineering,2010(7):868\|871. (in Chinese)

相似文献/References:

[1]王晶琼,王光华,李文兵,等.功能性单体引发聚合PAM及其神经网络的预测应用[J].武汉工程大学学报,2009,(07):41.
 WANG Jing qiong,WANG Guang hua,LI Wen bing,et al.Polymerization of PAM initiated by functional monomer and application in prediction based on the neural network[J].Journal of Wuhan Institute of Technology,2009,(10):41.
[2]屠艳平,管昌生,谭浩.基于BP网络的钢筋混凝土结构时变可靠度[J].武汉工程大学学报,2008,(03):36.
 TU Yan ping,GUAN Chang sheng,TAN Hao.The time dependent reliability of reinforced concrete structures based on BP network method[J].Journal of Wuhan Institute of Technology,2008,(10):36.
[3]余尤好.神经网络在通信系统回音对消中的应用[J].武汉工程大学学报,2012,(9):70.[doi:103969/jissn16742869201209016]
 YU You hao.Application of neural network in echo cancellation of communication system[J].Journal of Wuhan Institute of Technology,2012,(10):70.[doi:103969/jissn16742869201209016]
[4]吴和保,张亚平,夏志全,等.干式缸体炉前蠕化处理工艺及其力学性能[J].武汉工程大学学报,2014,(02):38.[doi:103969/jissn16742869201402008]
 WU He bao,ZHANG Ya ping,XIA Zhi quan,et al.Furnace front vermicularizing treating process and mechanical properties of drytype cylinder block[J].Journal of Wuhan Institute of Technology,2014,(10):38.[doi:103969/jissn16742869201402008]
[5]杨帆,姜勇,杨元君.信息融合技术在矿井安全监测系统中的应用[J].武汉工程大学学报,2014,(05):64.[doi:103969/jissn16742869201405014]
 YANG Fan,JIANG Yong,YANG Yuan jun.Information fusion technology in application of mine safety monitoring system[J].Journal of Wuhan Institute of Technology,2014,(10):64.[doi:103969/jissn16742869201405014]
[6]蒋冲宇,鲁统伟*,闵 峰,等.基于神经网络的发票文字检测与识别方法[J].武汉工程大学学报,2019,(06):586.[doi:10. 3969/j. issn. 1674-2869. 2019. 06. 013]
 JIANG Chongyu,LU Tongwei*,MIN Feng,et al.Invoice Text Detection and Recognition Based on Neural Network[J].Journal of Wuhan Institute of Technology,2019,(10):586.[doi:10. 3969/j. issn. 1674-2869. 2019. 06. 013]
[7]汪然然,娄联堂*.基于图像分析和深度学习的复合绝缘子憎水性分级[J].武汉工程大学学报,2021,43(05):580.[doi:10.19843/j.cnki.CN42-1779/TQ. 202106003]
 WANG Ranran,LOU Liantang*.Hydrophobicity Classification of Composite Insulators Based on Image Analysis and Deep Learning[J].Journal of Wuhan Institute of Technology,2021,43(10):580.[doi:10.19843/j.cnki.CN42-1779/TQ. 202106003]

备注/Memo

备注/Memo:
收稿日期:20131014作者简介:吴和保(1963\|),男,湖北麻城人,教授,博士.研究方向:金属凝固理论及其数值模拟、金属表面处理与防护、液态金属精确成型、金属雾化制粉、材料自动化检测与控制.
更新日期/Last Update: 2013-11-11