[1]杨永录,赵志康,朱玉乐,等.蠕墨铸铁缸体试验研究[J].现代铸铁,2006(1):66\|68. YANG Yong\|lu, ZHAO Zhi\|kang, ZHU Yu\|le,et al. Development of Vermicular Iron Cylinder Block[J].Modern cast iron,2006(1):66\|68.(in Chinese)[2]Guesser W, Schroeder T, Dawson S. Production Experience With Compacted Graphite Iron Automotive Components[J]. AFS Transactions, 2001(71): 1211\|1216.[3]Dawson S,Schroeder T. Practical Applications for Compacted Graphite Iron[J]. AFS Transactions,2004(47):129\|127.[4]陈位铭,金胜灿. 蠕墨铸铁CA6110柴油机缸体的试验研究[J].铸造技术,2006(4):341\|343. CHEN Wei ming,JIN Sheng\|can.Experimental Study on Compacted Graphite Iron CA6110 Diesel Engine Cylinder Block[J].Foundry Technology,2006(4):341\|343.(in Chinese)[5]李元松,李新平小波神经网络在高陡边坡位移预测中的应用[J].武汉工程大学学报,2010,32(9):38\|42.LI Yuang\|song,LI Xin\|ping.The application of wavelet neural network on displacement predicting for wigh steep slope[J].Wuhan Institute of Technology,2010,32(9):38\|42.(in Chinese)[6]邱汉泉,陈正德. 中国蠕墨铸铁40年(二)[J]. 中国铸造装备及技术,2006(2):2\|7.QIU Han\|quan,CHEN Zheng\|de.The 40 Years of Vermicular Graphite Cast Iron in China[J].China Foundry Mahinery & Technology,2006(2):2\|7.(in Chinese)[7]李炳华,杜欣. 蠕墨铸铁在柴油机部件上的应用[J].现代铸铁,2007(3):68\|71.LI Bing\|hua,DU Xin. The application of vermicular iron in diesel engine parts[J]. Modern cast iron,2007(3):68\|71.(in Chinese)[8]从爽.面向MATLAB工具箱的神经网络理论与应用 [M].北京:中国科技大学出版社:45\|62.CONG Shuang. Neural network theory and application for MATLAB toolbox[M].Beijing:University of Science and Technology of China Press:45\|62.(in Chinese)[9]夏善木,李大勇.用于铸铁力学性能快速预测的人工神经网络[J].应用科学,2002,20(3):309\|312.XIA Shan\|mu, LI Da\|yong.The Network for Fast Predict ion of Mechanical Properties of Cast Iron[J].Jouranal of applied sciences,2002,20(3):309\|312.(in Chinese)[10]王玉国,李学京.用BP神经网络预测铸铁的性能[J].计算机应用,2006(1):70\|72.WANG Yu\|guo,LI Xue\|jing.Using BP Ar tificial Neutr al Networks to For ecast Proper ties of Cast Iron[J].computer application,2006(1):70\|72.(in Chinese)[11]廖文东.基于BP神经网络蠕墨铸铁性能建模及其应用[D].上海:上海交通大学,2009. LIAO Wen\|dong. Modeing On The Characteristics of Vermicular Graphite Cast Iron and It’s Application Based On The BP Neural Network[D].Shanghai:Shanghai Jiao Tong University,2009.(in Chinese)[12]朱先勇,刘耀辉. 基于BP神经网络的球墨铸铁组织和力学性能预测 [J].湖南大学学报,2007,34(10):74\|77. ZHU Xian\|yong,LIU Yao\|hui. Prediction of the Microst ructural and Mechanical Properties of Pearlite Nodule Cast Iron Based on Bp Neut ral Netw ork[J].Journal of Hunan University,2007,34(10):74\|77.(in Chinese)[13]曾怡丹,曲洁. 基于BP神经网络的铁液碳、硅含量预测 [J].中国铸造装备与技术,2010(6):17\|20. ZENG Yi\|dan,QU Jie. Prediction of Carbon and Silicon Content in Molten Iron Based on BP Neural Networks[J].China Foundry Mahinery & Technology,2010(6):17\|20.(in Chinese)[14]邱东,祁晓钰. 基于神经网络的高炉铁水硅含量预报模型的研究[J].冶金分析,2009,29(2):49\|52. QIU Dong,QI Xiao\|yu.Study on prediction model of silicon content in blast furnace liquid iron based on neural network[J].Metallurgical Analysis,2009,29(2):49\|52.(in Chinese)[15]刘文曾,郭亚辉,蔡安克,等.缸体用蠕墨铸铁生产工艺的研究[J].中国铸造装备与技术,2009(6):37\|39. LIU Wen\|zeng, GUO Ya\|hui, CAI An\|ke, et al.A Study of Vermicular Graphite Cast Iron Technology to Produce CyHnder Block[J].China Foundry Mahinery & Technology,2009(6):37\|39.(in Chinese)[16]蔡安克,吴和保,夏志全,等.新型蠕化剂加入量对柴油发动机缸体材料蠕墨铸铁的组织与性能的影响[J].中国机械工程,2010(7):868\|871. CAI An\|ke,Wu He\|bao,XIA Zhi\|quan,et al.Effect of New Vermicular Agent on Microstucture and Properties of Compacted Graphite Iron for Diesel Engine Cylinder Block[J].China Mechanical Engineering,2010(7):868\|871. (in Chinese)
[1]王晶琼,王光华,李文兵,等.功能性单体引发聚合PAM及其神经网络的预测应用[J].武汉工程大学学报,2009,(07):41.
WANG Jing qiong,WANG Guang hua,LI Wen bing,et al.Polymerization of PAM initiated by functional monomer and application in prediction based on the neural network[J].Journal of Wuhan Institute of Technology,2009,(10):41.
[2]屠艳平,管昌生,谭浩.基于BP网络的钢筋混凝土结构时变可靠度[J].武汉工程大学学报,2008,(03):36.
TU Yan ping,GUAN Chang sheng,TAN Hao.The time dependent reliability of reinforced concrete structures based on BP network method[J].Journal of Wuhan Institute of Technology,2008,(10):36.
[3]余尤好.神经网络在通信系统回音对消中的应用[J].武汉工程大学学报,2012,(9):70.[doi:103969/jissn16742869201209016]
YU You hao.Application of neural network in echo cancellation of communication system[J].Journal of Wuhan Institute of Technology,2012,(10):70.[doi:103969/jissn16742869201209016]
[4]吴和保,张亚平,夏志全,等.干式缸体炉前蠕化处理工艺及其力学性能[J].武汉工程大学学报,2014,(02):38.[doi:103969/jissn16742869201402008]
WU He bao,ZHANG Ya ping,XIA Zhi quan,et al.Furnace front vermicularizing treating process and mechanical properties of drytype cylinder block[J].Journal of Wuhan Institute of Technology,2014,(10):38.[doi:103969/jissn16742869201402008]
[5]杨帆,姜勇,杨元君.信息融合技术在矿井安全监测系统中的应用[J].武汉工程大学学报,2014,(05):64.[doi:103969/jissn16742869201405014]
YANG Fan,JIANG Yong,YANG Yuan jun.Information fusion technology in application of mine safety monitoring system[J].Journal of Wuhan Institute of Technology,2014,(10):64.[doi:103969/jissn16742869201405014]
[6]蒋冲宇,鲁统伟*,闵 峰,等.基于神经网络的发票文字检测与识别方法[J].武汉工程大学学报,2019,(06):586.[doi:10. 3969/j. issn. 1674-2869. 2019. 06. 013]
JIANG Chongyu,LU Tongwei*,MIN Feng,et al.Invoice Text Detection and Recognition Based on Neural Network[J].Journal of Wuhan Institute of Technology,2019,(10):586.[doi:10. 3969/j. issn. 1674-2869. 2019. 06. 013]
[7]汪然然,娄联堂*.基于图像分析和深度学习的复合绝缘子憎水性分级[J].武汉工程大学学报,2021,43(05):580.[doi:10.19843/j.cnki.CN42-1779/TQ. 202106003]
WANG Ranran,LOU Liantang*.Hydrophobicity Classification of Composite Insulators Based on Image Analysis and Deep Learning[J].Journal of Wuhan Institute of Technology,2021,43(10):580.[doi:10.19843/j.cnki.CN42-1779/TQ. 202106003]