[1]袁学帅.分片铺设压电梁弯曲分析的无网格法[J].武汉工程大学学报,2014,(01):74-78.[doi:10. 3969/j. issn. 1674-2869. 2014. 01. 015]
YUAN Xueshuai.Analysis of piezoelectric beam with distributed patches using meshless method[J].Journal of Wuhan Institute of Technology,2014,(01):74-78.[doi:10. 3969/j. issn. 1674-2869. 2014. 01. 015]
点击复制
《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]
- 卷:
-
- 期数:
-
2014年01期
- 页码:
-
74-78
- 栏目:
-
机电与信息工程
- 出版日期:
-
2014-01-31
文章信息/Info
- Title:
-
Analysis of piezoelectric beam with distributed patches using meshless method
- 文章编号:
-
1674-2869(2014)01-0074-05
- 作者:
-
袁学帅
-
内蒙古民族大学数学学院,内蒙古 通辽 028043
- Author(s):
-
YUAN Xueshuai
-
School of Mathematical, Inner Mongolia University for Nationalities, Tongliao 028043,China
-
- 关键词:
-
层合梁; 压电; 分片铺设; 配点法
- Keywords:
-
collocation method multilayered beam; piezoelectric; distributed piezoelectric patches; point
- 分类号:
-
O24
- DOI:
-
10. 3969/j. issn. 1674-2869. 2014. 01. 015
- 文献标志码:
-
A
- 摘要:
-
由不同材料层合而成的层合压电结构中,各层之间的材料的不连续性使得采用无网格配点法处理此类问题时的精度降低. 为解决这一问题,将整个问题区域根据材料属性划分成不同的子区域,在每个子区域内采用无网格配点法. 为实现各子区域的“粘合”,在子区域的公共边界上分别施加力、电相容性条件和位移、电势连续性条件,导出子区域下的无网格配点法;并应用该方法对层合压电结构在不同铺设方式下的弯曲进行分析并比较. 结果表明:分片铺设压电片时,对同样体积大小的压电材料,不同的压电布置会产生不同的对形变的控制效果;采用上下对称粘贴的的铺设方式能实现较好的控制效果.
- Abstract:
-
To improve the accuracy of meshless method for multilayered piezoelectric, the domain with problem was divided into some sub?domains using point collocation method according to the material properties. On the interface of each sub?domain, the conditions of mechanical and electric reciprocity, displacement and electric potential continuity are imposed, which can be used to glue the two neighboring sub?domain solutions together. Then, a sub?domain point collocation method was presented to solve the multilayered piezoelectric problem and analyze the bending of piezoelectric patches distributed in different ways. The results show that different piezoelectric arrangements have different effects on deformation for the same size of piezoelectric materials, and using the vertically symmetrical pasting can achieve better control effect compared with the other ways.
参考文献/References:
[1] Liu G R, Dai K L, Lim K M,et al. A radial point interpolation method for simulation of two?dimensional piezoelectric structures[J]. Smart Mater Struct, 2003, 12:171-180. [2] Liew K M,Lim H K,Tan M J,et al. Analysis of laminated composite beams and plates with piezoelectric patches using theel element?free Galerkin method[J]. Comput Mech,2002,29:486-497. [3] Chen J S, Wang L H, Hu H Y,et al. Subdomain radial basis collocation method for heterogeneous media[J]. International Journal for Numerical Methods in Engineering, 2009,80(2):163-190. [4] Sharan M, Kansa E J, Gupta S. Applications of the multiquadric method for the solution of elliptic partial differential equations[J]. Appl Math Comput, 1997, 84:275-302. [5] Nayroles B, Touzot G, Villon P. Generalizing the finite element method:diffuse approximation and diffuse elements[J]. Comput Mech, 1992, 10(5):307-318. [6] Liu G R. Mesh free methods: Moving beyond finite element method[M]. Boca Raton: CRC Press LLC, 2002. [7] 袁学帅,陈富军,姚林泉. 压电层合结构的子域配点法[C]// 2010全国压电和声波理论及器件技术研讨会,2010, 441-446. YUAN Xue?shuai,CHEN Fu?jun,YAO Lin?quan. Subdomain collocation method for multilayered piezoelectric material[C]// Proceedings of the 2010 Symposium on Piezoelectricity,Acoustic Waves and Device Applications,2010, 441-446. (in Chinese)[8] 姚林泉,俞焕然. 具有压电材料薄板稳定性的有限元法[J]. 兰州大学学报,1999, 35(1):44-48. YAO Lin?quan,YU Huan?ran. Finite element method of stability for thin plate of piezoelectric material[J]. Journal of Lanzhou University,1999,35(1):44-48. (in Chinese)
备注/Memo
- 备注/Memo:
-
收稿日期:2013-10-25作者简介:袁学帅(1986-),男,山东济宁人,助教,硕士. 研究方向:计算数学和计算力学.
更新日期/Last Update:
2014-02-24