|本期目录/Table of Contents|

[1]林雪云.同好推荐算法的实践[J].武汉工程大学学报,2014,(08):75-78.[doi:103969/jissn16742869201408014]
 LIN Xue yun.Execution of enthusiasts recommendation algorithm[J].Journal of Wuhan Institute of Technology,2014,(08):75-78.[doi:103969/jissn16742869201408014]
点击复制

同好推荐算法的实践(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2014年08期
页码:
75-78
栏目:
机电与信息工程
出版日期:
2014-08-31

文章信息/Info

Title:
Execution of enthusiasts recommendation algorithm
文章编号:
16742869(2014)08007504
作者:
林雪云
福建师范大学福清分校,福建 福清 350300
Author(s):
LIN Xueyun
Fuiqing Branch of Fujian Normal University, Fuqing 350300,China
关键词:
同好度同好推荐算法 矩阵模型数据挖掘关联度
Keywords:
enthusiasts degree enthusiasts recommendation algorithm matrix model data mining correlation
分类号:
TP311.1
DOI:
103969/jissn16742869201408014
文献标志码:
A
摘要:
针对传统推荐算法在运算速度及稳定性不足等问题提出了基于矩阵模型的创新算法.通过对手机社区用户图书近一年的下载数据进行分析,依次测试每个月不同数据量下新旧算法的推荐效率,改进算法的离线计算方式,提前计量物品与物品之间的同好度表,同时,随机抽取百多名用户,计算新旧算法平均耗时表和数据量时间比指标表.实验表明,改进的算法具有明显的效率优势,不仅运算速度提高,运算结果可以重复使用,还提高了算法耗时的稳定性.算法拓展可用于商品的同好推荐,计算两物品之间的关联度,分析事件发生的影响因素等.
Abstract:
An improved recommendation algorithm was proposed based on matrix model to improve the computing speed and stability of the traditional algorithms. With the data about the information of downloaded books for nearly a year by mobile community users, the recommendation efficiency, average timeconsuming and the ratio between data size and time of the proposed algorithm were analyzed with the comparison of the traditional recommendation algorithms. The analysis results show that the recommendation efficiency is increased obviously, and the computing speed and the stability of timeconsuming are also improved; moreover, the form of offline calculation is modified in the proposed algorithm, and enthusiast table between different goods is precalculated in offline form. The proposed algorithm can be applied in enthusiast recommendation of product, computing the correlation between the two items and analyzing the impact of factors such as events.

参考文献/References:

[1]YOU Wen, YE Shuisheng. A survey of collaborative filtering algorithm applied in ECommerce recommender system [J]. Computer Technology and Development, 2006, 16(9): 7072.[2]HERLOCKER J L,KONSTAN J A, BORCHERS A, et al. An algorithmic framework for performing collaborative filtering [C]//Proc of the 22nd Annual Int. ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 1999:230237.[3]MELVILE P, MOONEY R J, NAGARAJAN R. Contentboosted collaborative filtering for lmproved recommendations [C]//Proc of the 18th National Conf on Artificial Intelligence. 2002:187192. [4]RESNICK P, IACOVOU N, SUCHAK M, et al. Group lens: An open architecture for collaborative filtering of net news [C]// Proc of the ACM CSCW 94 Conf on ComputerSupported Cooperative Work, New York: ACM, 1994: 175186.[5]GHANI R, FANO A. Building Recommender Systems Using a Knowledgebase of Product Semantics [EB/OL]. 20021028/20040216.[6]李涛.数据挖掘的应用与实践:大数据时代的案例分析[M].厦门:厦门大学出版社,2013.LI Tao . Data mining application and practice: case analysis of the era of big data [M]. Xiamen:Xiamen University Press, 2013.(in Chinese) [7]王杨. 基于属性关联度的启发式约简算法 [J].计算机与数字工程, 2012(4):1731.WANG Yang. Heuristic reduction algorithm based on the properties of correlation [J]. Computer &Digital Engineering, 2012(4):1731.(in Chinese)[8]刘臻.计算机应用新领域数据挖掘前景及应用探究[J].计算机光盘软件与应用, 2012(17): 134136.LIU Zhen. New areas of computer applications  data mining prospects and applications inquiry [J]. Computer CD Software and Application, 2012(17):134136.(in Chinese)[9]吴昉,宋培义.数据挖掘的应用[J].贵州科学,2012,30(3):5456.WU Fang, Peiyi SONG. Data mining applications [J]. Guizhou Science, 2012, 30 (3):5456.(in Chinese)

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:20140520基金项目:福建省B类项目(JB13197)作者简介:林雪云(1976),女, 福建闽侯人,副教授,硕士。研究方向:数据挖掘.
更新日期/Last Update: 2014-09-16