[1]李世取, 刘文芬, 滕吉红. k 阶拟Bent 函数的性质及其应用[C]//谢仁宏. 第7 届全国青年通信学术会议论文集.北京: 电子工业出版社, 2001:939943.LI Shiqu, LIU Wenfen, TENG Jihong. Some properties of korder quasibent functions and its applications[C]//XIE Renhong. The proceedings of the Seventh National Youth Conference on communication. Beijing: Electronic Industry Press, 2001:939943.(in Chinese)[2]滕吉红, 李世取, 刘文芬. k阶拟Bent 函数在密码设计和通信中的应用[J]. 通信学报, 2003, 24(12):5866.TENG Jihong, LI Shiqu, LIU Wenfen. The application of korder quasibent functions in cryptology and communication fields [J]. Journal of China Institute of Communication, 2003,24(12):5866.(in Chinese)[3]张习勇, 韩文报. 拟Bent 函数的性质和构造[J]. 数学学报, 2004, 47(6):11751184.ZHANG Xiyong, HAN Wenbao. Some properties and constructions of quasibent functions [J]. Acta Mathematica Sinica, 2004, 47(6):11751184.(in Chinese)[4]胡斌, 金晨辉, 冯春海. Plateaued 函数的密码学性质[J]. 电子与信息学报, 2008, 30(3): 660664.HU Bin, JIN Chenhui, FENG Chunhai. Cryptographic properties of plateaued functions[J]. Journal of Electronics & Information Technology, 2008, 30(3): 660664.(in Chinese)[5]刘志高. 两类多输出一阶拟Bent函数的构造 [J]. 武汉工程大学学报,2010, 32(9):108110.LIU Zhigao. The constructions of two classes of 1order multioutput quasibent functions[J]. Journal of Wuhan Institute of Technology, 2010, 32(9):108110.(in Chinese)[6]王维琼, 肖国镇. Plateaued函数的对偶性[J]. 计算机科学, 2013, 40(5): 1920.WANG Weiqiong, XIAO Guozhen. Dulity of plateaued functions[J]. Computer Science, 2013, 40(5): 1920.(in Chinese)[7]COURTOIS N, MEIER W. Algebraic attacks on stream ciphers with linear feedback [C]//Advances in Cryptology EUROCRYPT 2003. Berlin:SpringerVerlag 2003: 346359.[8]MEIER W, PASALIC E, CARLET C. Algebraic attacks and decomposition of Boolean functions[C] //Advances in CryptologyEUROCRYPT 2004. Berlin:SpringerVerlag 2004: 474491.[9]CARLET C, DALAI D K, GUPTA K C, et al. Algebraic immunity for cryptographically significant Boolean functions: analysis and construction[J]. IEEE Transactions on Information Theory, 2006, 52(7): 31053121.[10] 张凤荣, 胡予濮. 具有高阶代数免疫的弹性函数[J]. 武汉大学学报:理学版, 2010, 56(2): 207210.ZHANG Fengrong, HU Yupu. Resilient boolean functions with high algebraic immunity[J]. Journal of Wuhan University:Natural Science Edition, 2010, 56(2): 207210.(in Chinese)[11] 熊晓雯, 屈龙江, 李超. 具有最大代数免疫度的布尔函数的构造[J]. 计算机科学, 2011, 38(1): 2630.XIONG Xiaowen, QU Longjiang, LI Chao. Construction of boolean function with maximum algebraic immunity [J]. Computer Science, 2011, 38(1): 2630.(in Chinese)[12]董新锋, 张文政, 周宇,等. 基于代数正规型构造的代数免疫最优布尔函数[J]. 计算机工程, 2013, 39(7): 169172.DONG Xinfeng, ZHANG Wenzheng,ZHOU Yu,et al. Optimal algebraic immune boolean function based on algebraic normal form construction[J]. Computer Engineering, 2013, 39(7): 169172.(in Chinese)[13]冯克勤, 廖群英. 对称布尔函数的代数免疫性[J]. 工程数学学报, 2008, 25(2): 191198.FENG Keqin, LIAO Qunying. On algebraic immunity of symmetric boolean functions[J]. Chinese Journal of Engineering Mathematics, 2008, 25(2): 191198.(in Chinese)[14]吴玮玲, 王永娟, 张世武. 奇数变元plateaued函数代数免疫性质研究[J]. 计算机工程与应用, 2012, 48(2): 9698.WU Weilin, WANG Yongjuan,ZHANG Shiwu. On algebraic immunity of plateaued functions in odd variables[J]. Computer Engineering and Applications,2012, 48(2): 9698.(in Chinese)[15]刘志高. 级联函数的代数免疫性研究[J]. 计算机工程, 2012, 38(1): 117119.LIU Zhigao. Research on algebraic immunity of Boolean functions by concatenation[J]. Computer Engineering, 2012, 38(1): 117119.(in Chinese)[16]周宇, 曹云飞, 张文政,等. 布尔函数的代数免疫与扩散阶的关系[J]. 计算机工程与科学, 2011, 33(10): 3438.ZHOU Yu, CAO Yunfei,ZHANG Wenzheng et al. Relationship between algebraic immunity and propagation characteristics of the boolean functions[J]. Computer Engineering & Science, 2011, 33(10): 3438.(in Chinese)[17]冯登国. 频谱理论及其在密码学中的应用[M]. 北京: 科学出版社, 2000:4145.FENG Dengguo. Spectrum theory and its applications in cryptography[M]. Beijing: Science Press, 2000:4145.(in Chinese)