|本期目录/Table of Contents|

[1]陈向阳1,胡江涛1,刘 培2,等.多传感器复杂网络数据融合算法的MATLAB仿真[J].武汉工程大学学报,2015,37(01):67-72.[doi:10. 3969/j. issn. 1674-2869. 2015. 01. 015]
 CHEN Xiang-yang,LU Jian-tao,LIU Pei,et al.Simulation of multi-sensor complex network data  fusion algorithm in MATLAB[J].Journal of Wuhan Institute of Technology,2015,37(01):67-72.[doi:10. 3969/j. issn. 1674-2869. 2015. 01. 015]
点击复制

多传感器复杂网络数据融合算法的MATLAB仿真(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
37
期数:
2015年01期
页码:
67-72
栏目:
机电与信息工程
出版日期:
2015-01-31

文章信息/Info

Title:
Simulation of multi-sensor complex network data  fusion algorithm in MATLAB
文章编号:
1674-2869(2015)01-0067-06
作者:
陈向阳1胡江涛1刘 培2徐 莹3沈 超1
1.武汉工程大学计算机科学与工程学院,湖北 武汉 430205;2.邮电与信息工程学院,  湖北 武汉 430074;3.湖北省档案局(馆)科技处, 湖北 武汉 430071
Author(s):
CHEN Xiang-yangLU Jian-taoLIU PeiXU YingSHEN Chao
1.School of Computer Science and Engineering, Wuhan Institute of Technology;  2.The college of Post and Telecommunication of WIT, Wuhan 430074,China;   3.Science and Technology Department, Hubei Provincial Archives Bureau,Wuhan 430071, China
关键词:
复杂网络信号图像融合PCA变换小波变换IHS变换
Keywords:
complex network signalimage fusionPCA transformwavelet transformIHS transform
分类号:
TB35
DOI:
10. 3969/j. issn. 1674-2869. 2015. 01. 015
文献标志码:
A
摘要:
多传感器复杂网络数据融合技术在多个领域中有着广泛的应用,目前存在多种像素级多传感器网络采集图像信息融合算法包括简单的图像融合算法、PCA变换图像融合算法和小波变换的图像融合算法等,但是每种算法都各具特点,因此有必要弄清楚其使用局限性以便能在实际应用中做出合理的选择. 利用仿真软件Matlab结合从多传感器中获得的冗余图像数据对各种算法进行模拟实现,得出各种算法的融合图像的客观评价结果即在不同颜色空间中的相关系数和清晰度值,通过对比各种算法结果得到只有在特定的应用条件下才具有良好的融合效果,才能够很好地还原出原始的图像.
Abstract:
the multi-sensor data fusion techniques of complex networks have extensive application in multiple fields. There are many pixel-level multi-sensor image fusion algorithms, such as simple image fusion methods, principal component analysis method and wavelet transform,etc, and every algorithm has its unique features. It is necessary to make clear about their limitations, so we can make a suitable choice in the application. By using the simulation software Matlab to simulate the realization of various algorithms to process redundant image data obtained from multiple sensors, objective evaluation of image fusion about correlation coefficient and definition of value in different color space that results from various algorithms were obtained. The results of comparison show that various algorithms only in specific application conditions have good fusion effects and restore the original images.

参考文献/References:

[1] James J Clark, Alan L Yuille. Data Fusion for Sensory Information Processing Systems[M]. Kluwer Academic Publishers, 2010:223?鄄225.  [2] 刘海涛,石跃祥,康蕴.基于小波分析的图像融合新方法[J].计算机工程与应用.2013,49(6):205?鄄208.  LIU Haitao,SHI Yuexiang,KANG Yun.New method for image fusion based on wavelet transform[J]. Computer Engineering and Applications.2013,49(6):205?鄄208.(in Chinese)  [3] 廉敬.图像融合技术研究[J].信息通信,2013,60(1):28?鄄29.  LIANJing.The Research of Image Fusion[J].Information & Communications,2013,60(1):28?鄄29.(in Chinese)  [4] 王志杰,吴娜.改进的多传感器图像融合算法研究[J].科技通信,2012,28(6):80?鄄81.  WANG Zhijie,WU Na.Improved Multi Sensor Image Fusion Algorithm[J]. Bulletin of Science and Technology.2012,28(6):80?鄄81.(in Chinese)  [5] 胡钢,秦新强,田径.像素级多传感器图像融合技术[J].沈阳工程学院学报,2007,3(2):148?鄄152.  HU Gang,QIN Xin?鄄qiang,TIAN Jing;Image fusion technology of multi?鄄sensor at pixel level[J]. Journal of Shenyang Institute of Engineering: 2007,3(2): 148?鄄152.(in Chinese)  [6] 周芳,王鹏波,李春升.遥感图像融合效果评估方法[J].现代雷达,2013,20(3):239?鄄243.  ZHOU Fang,WANG Pengbo,LI Chunsheng.Evaluation Method of Remote Sensing image Fusion Effect[J].Modern Radar,2013,35(3):19?鄄23.(in Chinese)  [7] Madni A.M.,Weijie Yun, Wan,L.A .Micromachining and artificial neural networks:the future of smart sensing[J]. IEEE ,1995,45(2):117?鄄130.  [8] Pohl C V,Genderen J L. Multisensor image fusion in remote sensing:concepts,methods,and applications[J]. International Journal of Remote Sensing,1998,19(5): 823?鄄854.  [9] 王仁礼,戚铭尧,王慧.用于图像融合的IHS变换方法的比较[J].测绘学院学报,2000,17(4):269?鄄272.  WANG Renli,QI Mingyao,WANG HUI. Comparative Study on of the Mrthod of HIS Transformation for Image Fusion[J].Journal of Institute of Surveying and mapping,2000,17(4):269?鄄272.(in Chinese)  [10] 马平等.多传感器信息融合基本原理及应用[J].控制工程,2006,13(1):48?鄄51.  MA Ping .Theory and Application of Multi?鄄sensor Information Fusion[J]. Control Engineering of China,2006,13(1):48?鄄51.(in Chinese)  [11] 蒋晓瑜. 基于小波变换和伪彩色方法的多重图像融合算法研究[D].北京:北京理工大学,2007.  JIANG Xiaoyu. Reasearch on multisensor image fusion algorithm based on Wavelet Transform and false color[D]. Beijing:Beijing Institute of Technology Department of optical engineering,2007.(in Chinese)  [12] 张家明.基于小波变换的图像融合算法研究[J].武汉理工大学学报,2007,29 (12) : 62?鄄65.  ZHANG Jiaming.Research on image fusion algorithm based on Wavelet Transform[J]. Journal of WUT(Information & Management engineering),2007,29(12):62?鄄65.(in Chinese)  [13] 顾霞芳.基于小波变换的图像融合方法探讨与比较[J].中国西部科技, 2009,8 (26): 21?鄄22.  GU xiafang. Discussion and comparison on image fusion algorithm based on Wavelet Transform[J].Science an Technology of West China,2009,8(26): 21?鄄22.(in Chinese)  [14] 浦西龙,吕建平.一种基于小波变换的多分辨率图像融合算法[J].计算机工程与应用,2007,43(20):65?鄄67.  PU Xilong, LV Jianping.A lgorithm of wavelet?鄄based multiresolution image flusion[J].Computer Engineering and Applications,2007,43(20):65?鄄67.(in Chinese)  [15] 李晓春,陈京.基于小波变换的图像融合算法研究[J].遥感技术与应用,2003,18 (1):27?鄄30.  LI Xiaochun, CHEN jing. The Research of Multispectral image Fusion Algorithm Based On Wavelet Transform[J]. Remote Sensing Technology and Application,2003,18(1):27?鄄30.(in Chinese)  [16] 赵瑞珍.基于小波变换的图像多尺度数据融合[J].计算机辅助设计与图像学学报,2002,14(4):361?鄄364.  ZHAO Ruizhen etc.Multiscale Image Data Fusion with Wavelet Transform[J]. Joural of Computer?鄄Aided Design & Computer Graphics,2002,14(4): 361?鄄364.(in Chinese)  [17] 范文涛;基于小波变换的图像融合技术研究[D];郑州:河南大学;2010.  FAN Wentao. Research on image fusion algorithm based on Wavelet Transform[D]. Zhengzhou:Henan  University,2010.(in Chinese)  [18] Jitendra R Raol. Multi-Sensor Data Fusion with MATLAB[M].CRC Press,2009.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2013-12-04  基金项目:湖北省教育科学“十二五”规划2013年度立项课题:地方性高校新兴交叉学科建设的研究——以网络科学       为例(2013B060).   作者简介:陈向阳(1969-),男,河南开封人,副教授,硕士. 研究方向:网络通信工程、复杂网络、生物信息等.
更新日期/Last Update: 2015-03-21