|本期目录/Table of Contents|

[1]吴长勤,王亚军,王传安.结合颜色向量角和灰度熵的图像修复[J].武汉工程大学学报,2015,37(06):51-55.[doi:10. 3969/j. issn. 1674-2869. 2015. 06. 011]
 ,Image inpainting algorithm combining color vector angle with entropy of brightness[J].Journal of Wuhan Institute of Technology,2015,37(06):51-55.[doi:10. 3969/j. issn. 1674-2869. 2015. 06. 011]
点击复制

结合颜色向量角和灰度熵的图像修复(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
37
期数:
2015年06期
页码:
51-55
栏目:
机电与信息工程
出版日期:
2015-06-30

文章信息/Info

Title:
Image inpainting algorithm combining color vector angle with entropy of brightness
文章编号:
1674-2869(2015)06-0051-05
作者:
吴长勤王亚军王传安
安徽科技学院数理与信息工程学院,安徽 凤阳 233100
Author(s):
WU Chang-qin WANG Ya-junWANG Chuan-an
College of Mathematical and Information, Anhui Science and Technology University, Fengyang 233100,China
关键词:
图像修复颜色向量角灰度熵Criminisi算法
Keywords:
image inpaintingcolor vector angleentropy of brightnessCriminisi algorithm
分类号:
TN911.73
DOI:
10. 3969/j. issn. 1674-2869. 2015. 06. 011
文献标志码:
A
摘要:
针对现有图像修复算法效率低下的问题,提出一种结合颜色向量角和灰度熵的图像修复改进算法.根据颜色向量角能够衡量图像中不同颜色之间的差异特性,算法先构造边缘项来代替Criminisi算法中的数据项,并改进优先级计算方式;然后根据图像局部灰度均值的一维信息熵来度量图像中待修复块周围图像,进而采用局部平均灰度熵确定搜索区域的大小,以减少搜索最佳匹配块的搜索时间.实验结果表明,与Criminisi算法相比无论从速度上还是修复的质量上文中所提算法都占有优势.
Abstract:
A new restoration algorithm combining color vector angle with entropy of brightness was proposed to improve low efficiency in image inpainting. First, we measured the different characteristics of colors in the images according to the color vector angle, and redefined the calculation priority on the basis of Criminisi algorithm. Then, we calculated the one-dimensional entropy of local average gray values around the inpainting area, and used the average gray entropy to determine the size of the search area, which could reduce the search time for the best matching block. The experimental results show that the proposed algorithm has better restoration and less time consuming than Criminisi algorithms.

参考文献/References:

[1] BERTALMIO M,SAPlRO G,CASELLES V,et al.Image inpainting[C]//Proceedings of the International Conference on Computer Graphics and Interactive Techniques.New Orleans Louisiana USA, 2000, 1: 417-424.[2] CHAN T F,SHEN J.Mathematical models for local non-texture inpainting[J]. SIAM Journal on Applied Mathematics, 2002,62(3):1019-1043.[3] ESEDOGLU S,SHEN J. Digital image inpainting by the Muxnford-Shah-Euler image model[J].European Journal of Applied Mathematics,2002,13(4):353-370.[4] 叶学义, 王靖,赵知劲,等. 鲁棒的梯度驱动图像修复算法[J].中国图像图形学报,2012,17(6):630-635.YE Xue-yi,WANG Jing,ZHAO Zhi-jin,et al. Robust gradient driving image inpainting method[J]. Journal of Image and Graphics,2012,17(6):630-635.(in Chinese)[5] EFROS A A,FREEMAN W T. Image quilting for texture synthesis and transfer[C]//Proeeedings of ACM Transactions on GraPhics(SIGGRAPH 01),USA:ACM,2001.341-346.[6] 朱晓临, 陈晓冬,朱园珠,等. 基于显著结构重构与纹理合成的图像修复算法[J].图形学报,2014,35(3):336-342.ZHU Xiao-lin,CHEN Xiao-dong,ZHU Yuan-zhu, et al. An image restoration algorithm based on structure and texture synthesis with reconstruction of significant structure of images[J]. Journal of Graphics, 2014,35(3):336-342. (in Chinese)[7] 马爽,谈元鹏,许刚.块关联匹配与低秩矩阵超分辨融合的图像修复[J].计算机辅助设计与图形学学报,2015,27(2):271-278.MA Shuang,TAN Yuan-peng,XU Gang.Image completion based on fusion of patch associated matching and low-rank matrix super resolution[J]. Journal of Computer?鄄Aided Design & Computer Graphics,2015,27(2):271-278. (in Chinese)[8] 赵胜.基于纹理合成的图像修复算法研究[D].成都:电子科技大学,2014.ZHAO Sheng. The image restoration algorithm based on texture synthesis[D]. Chengdu: University of Electronic Science and Technology of China,2014.(in Chinese)[9] 陈晓冬,朱晓临.基于改进优先级的加权匹配图像修复算法[J].合肥工业大学学报:自然科学版,2013, 36(1):113-118.CHEN Xiao-dong,ZHU Xiao-lin. A weighted matching image restoration algorithm based on modified priority[J]. Journal of Hefei University of Technology:Natural Science,2013, 36(1):113-118.(in Chinese)[10] 叶春.数字图像水印及修复算法研究[D].桂林:广西师范大学,2014.YE Chun. Research on digital image watermarking and repair algorithm[D]. Guilin:Guangxi Normal University,2014. (in Chinese)[11] RIVERA M,OCEGUEDA O,MARROQUIN J L.Entropy-controlled quadratic markov measure field models for efficient image segmentation[J].IEEE Transactions on Image Processing,2007,16(12):3047-3057.[12] 张晴.基于样本的数字图像修复技术研究[D].上海:华东理工大学,2012.ZHANG Qing. Study on exemplar-based image inpainting technologies[D]. Shanghai: East China University of Science and Technology,2012. (in Chinese)

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2015-4-20基金项目:安徽省教育厅自然科学基金(KJ2013Z048)项目作者简介:吴长勤(1962-),男,安徽肥东人,副教授.研究方向:图像处理技术.
更新日期/Last Update: 2015-08-23