|本期目录/Table of Contents|

[1]胡婷婷,刘 姣,金国祥*.基于三角方法的Cauchy主值积分数值计算[J].武汉工程大学学报,2015,37(06):63-66.[doi:10. 3969/j. issn. 1674-2869. 2015. 06. 013]
 ,Numerical computation of principal value integrals with Cauchy kernel based on trigonometric method[J].Journal of Wuhan Institute of Technology,2015,37(06):63-66.[doi:10. 3969/j. issn. 1674-2869. 2015. 06. 013]
点击复制

基于三角方法的Cauchy主值积分数值计算(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
37
期数:
2015年06期
页码:
63-66
栏目:
机电与信息工程
出版日期:
2015-06-30

文章信息/Info

Title:
Numerical computation of principal value integrals with Cauchy kernel based on trigonometric method
文章编号:
1674-2869(2015)06-0063-04
作者:
胡婷婷刘 姣金国祥*
武汉工程大学计算机科学与工程学院,湖北 武汉 430205
Author(s):
HU Ting-ting LIU Jiao JIN Guo-xiang
School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
Cauchy主值积分三角插值求积公式
Keywords:
Cauchy principal value integrals trigonometric interpolation quadrature formulae
分类号:
O241.38 O174.41
DOI:
10. 3969/j. issn. 1674-2869. 2015. 06. 013
文献标志码:
A
摘要:
用三角变量替换的方法把含Cauchy核的主值积分变换到[0,π)上含三角函数核的主值积分,用非等距结点的π(反)周期三角插值多项式作为工具去逼近新的主值积分的被积函数,构造出含Cauchy核主值积分的一个新的内插型求积公式,根据求积公式视结点个数的奇偶性不同给出了求积公式的不同表达式,推导出求积公式中求积系数的循环关系式. 最后以一个实例在计算机上用Matlab编程实现,用得到的数值结果和图像来说明所得求积公式的误差渐进性.
Abstract:
Using the method of changing trigonometric variable, a principal value integral with Cauchy kernel was transformed to a principal value integral with trigonometric functions kernel. The new interpolatory-type quadrature formulae were constructed for the principal value integral with Cauchy kernel, in which the integrand of the new principal value integral was approximated using the tool ofπ-(antiperiodic)periodic trigonometric interpolation polynomial with nonequdistant nodes. The different representations of the quadrature formulae were made depending on the odd and even numbers of the nodes, and the recurrence relations of the quadrature coefficients were derived. Finally, the asymptotic error of the quadrature formulae was illustrated, using the numerical result and images from a case realized by Matlab.

参考文献/References:

[1] 杜金元.奇异积分的数值计算[J].华中师范学院学报,1985(2):15-28.DU Jin?鄄yuan.On the numerical evaluation of singular integrals[J].Journal of central China teachers college,1985(2):15-28.(in Chinese) [2] 路见可,杜金元.奇异积分方程的数值解法[J].数学进展,1991,20(3):278-293.LU Jian?鄄ke, DU Jin?鄄yuan. The numerical solution of singular integral equations[J]. Advances in Mathematics,1991,20(3):278-293.(in Chinese)[3] HASEGAWA T,TORII T.An automatic quadrature for Cauchy principal value integrals[J]. Math Co?鄄mp,1991(56):741-754.[4] HUNTER D B. Some Gauss?鄄type formulae for the evaluation of Cauchy principal values of integrals[J]. Numer Math,1972(19):419-424.[5] 金国祥.含Hilbert核的奇异积分带重结点的求积公式[J].数学杂志,1997,17(3):427-432.JIN Guo-xiang.Quadrature formulae with multiple nodes for singular integrals with Hilbert kernel[J]. Journal of mathematics,1997,17(3):427-432.(in Chinese) [6] LU Jian?鄄ke.A class of quadrature formulas of chebyshev type for singular integrals[J]. J Ma-Th Anal Appl,1984(100):416-435.[7] Philsu Kim, Choi U Jin. A quadrature rule of interpolatory type for Cauchy integrals[J]. J Comp Appl Math,2000(126):207-220.[8] Delvos.Hermite interpolation with trigonometric polynomials[J]. BIT,1993(33):113-123.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2015-04-22基金项目:湖北省教育厅科研基金重点项目(D20101506)作者简介:胡婷婷(1990-)女,湖北荆州人,硕士研究生.研究方向:奇异积分方程数值计算援* 通信联系人.
更新日期/Last Update: 2015-08-23