|本期目录/Table of Contents|

[1]刘小宁1,2,刘 岑2,等.单层与多层球形容器爆破压力的概率分布[J].武汉工程大学学报,2015,37(07):49-54.[doi:10. 3969/j. issn. 1674-2869. 2015. 07. 011]
 LIU Xiao-ning,LIU Cen,et al.Probability distribution of burst pressure in single-layer and multi-layer spherical vessel[J].Journal of Wuhan Institute of Technology,2015,37(07):49-54.[doi:10. 3969/j. issn. 1674-2869. 2015. 07. 011]
点击复制

单层与多层球形容器爆破压力的概率分布(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
37
期数:
2015年07期
页码:
49-54
栏目:
机电与信息工程
出版日期:
2015-07-31

文章信息/Info

Title:
Probability distribution of burst pressure in single-layer and multi-layer spherical vessel
文章编号:
1674-2869(2015)07-0049-06
作者:
刘小宁1刘 岑2张红卫1刘 兵1袁小会1陈 刚1
1. 武汉软件工程职业学院机械工程学院,湖北 武汉 430205;2. 武汉工程大学机电工程学院,湖北 武汉 430205
Author(s):
LIU Xiao-ning1 2LIU Cen2ZHANG Hong-wei1LIU Bing 1YUANG Xiao-hui 1CHEN Gang 1
1. School of Mechanical Engineering, Wuhan Polytechnic College of Software and Engineering, Wuhan 430205, China;2. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
单层与多层球形容器爆破压力中径公式概率分布
Keywords:
single-layer and multi-layer spherical vessel burst pressure mid-diameter formula probability distribution
分类号:
TH 49
DOI:
10. 3969/j. issn. 1674-2869. 2015. 07. 011
文献标志码:
A
摘要:
为了建立压力容器可靠性设计方法,基于59组实测数据,应用数理统计理论与方法,定量分析了材料屈强比范围为0.336 2~0.847 5与径比范围为1.053~1.257的单层与多层球形容器爆破压力的概率分布.结表明,在显著度为0.05时,其爆破压力的实测值与中径公式计算值之比,是基本符合正态分布的随机变量;在双侧置信度为98%时,该随机变量的均值为1.001 3~1.049 7,标准差为0.068 95~0.095 95;在可靠度为99.98%时,爆破压力的实测值与中径公式计算值与之比为0.644 5~1.358 1.
Abstract:
To establish the reliable design method of pressure vessel, the probability distribution of single-layer and multi-layer spherical vessel burst pressure was analyzed; Based on 59 set test data, applying statistical theory and methods, we explored quantitatively the probability distribution of burst pressure of single-layer and multi-layer spherical vessel with the material yield and tensile strength ratio of 0.336 2-0.847 5 and the radius ratio of 1.053-1.257. The results shows that the ratio of the measured burst pressure values and mid-diameter formula theory value is consistent with the normal distribution of random variables at the saliency of 0.05; the mean values of the random variable are 1.001 3-1.049 7, and the standard deviations are 0.068 95-0.095 95 at two-sided confidence of 98%; the ratios of the measured burst pressure value and the mid-diameter formula calculated value are 0.644 5-1.358 1 when the reliability is 99.98%.

参考文献/References:

[1] 中华人民共和国国家标准. GB 150.1~150.4-2011, 压力容器[S]. 北京: 中国标准出版社, 2012.National Standard of the People’s Republic of China. GB 150-2011 Steel pressure vessel[S]. Beijing: Chinese Standard Press, 2012.(in Chinese).[2] 中华人民共和国国家标准. GB12337-1998, 钢制球形储罐[S]. 北京: 中国标准出版社, 1998.National Standard of the People’s Republic of China. GB 12337-1998 Steel spherical tanks[S]. Beijing: Chinese Standard Press, 1998. (in Chinese)[3] 徐灏. 机械强度的可靠性设计[M]. 北京: 机械工业出版社, 1984.XU Hao. Mechanical strength reliability design [M]. Beijing: Mechanical Industry Publishing House, 1984. (in Chinese)[4] 袁小会, 刘岑, 吴元祥, 等. 单层厚壁圆筒容器爆破压力的分布规律与参数[J]. 武汉工程大学学报, 2014, 36(2): 49-55.YUAN Xiao-hui, LIU Cen, WU Yuan-xiang, et al. Distribution law and parameters of monolayer thick-wall cylindrical vessel burst pressure[J]. Journal of Wuhan Institute of Technology, 2014, 36(2): 49-55. (in Chinese)[5] 刘小宁, 张红卫, 韩春鸣, 等. 耐压试验时薄壁内压容器静强度的可靠度[J]. 机械设计与研究, 2013, 29(1): 39-40, 45.LIU Xiao-ning, ZHANG Hong-wei, HAN Chun-ming, et al. Reliability of Thin-walled internal pressure vessels static strength in pressure test[J]. Machine Design & Research, 2013, 29(1): 39-40, 45 (in Chinese).[6] 刘小宁, 刘岑, 张红卫, 等. 钢制薄壁内压容器静强度最小安全系数的研究[J]. 现代制造工程, 2014(9): 130-133.LIU Xiao-ning, LIU Cen, ZHANG Hong-wei, et al. Study on the minimum safety factor of static strength for Thin-walled internal pressure vessel [J]. Modern Manufacturing Engineering,2014(9):130-133.(in Chinese)[7] 刘小宁, 张红卫, 韩春鸣. 基于模糊可靠度的薄壁外压容器稳定性设计[J]. 机械强度, 2011, 33(2): 217-224.LIU Xiao-ning, ZHANG Hong-wei, HAN Chun-ming. Stability design of steel thin wall external pressure vessels based on fuzzy reliability[J]. Journal of Mechanical Strength, 2011, 33(2): 217-224. (in Chinese)[8] 刘小宁, 刘岑, 张红卫, 等. 球形容器静强度的分布规律与参数[J]. 压力容器, 2012, 29(8): 26-30.LIU Xiao-ning, LIU Cen, ZHANG Hong-wei, et al. New methods of calculation distribution law and parameters of the spherical vessel static strength[J]. Pressure Vessel Technology,2012,29(8):26-30.(in Chinese)[9] 刘小宁. 球形容器静强度概率分布研究[J]. 石油化工设备, 2004, 33(4): 17-19.LIU Xiao-ning. Study on probability distribution of spherical vessel static strength[J]. Petro-Chemical Equipment, 2004, 33(4): 17-19. (in Chinese)[10] 李生昌. 压力容器爆破压力的确定[J]. 化工机械, 1987, 14(2): 120-126.LI Sheng-chang. Burst pressure determination of pressure vessel[J]. Chemical Engineering Machinery, 1987,14(2):120-126. (in Chinese)[11] 郑津洋, 匡继勇, 徐平, 等. 多层超高压容器爆破压力研究[J]. 化工机械, 1994, 21(5): 271-277.ZHENG Jin-yang, KUANG Ji-yong, XU Ping, et al. Research intobursting pressures of the multi-layered super-high pressure vessel[J]. Chemical Engineering & Machinery, 1994, 21(5): 271-277.(in Chinese).[12] 柳爱群, 尹益辉, 刘兴福. 基于实测数据的特种球形压力容器爆破压力计算公式[J]. 应用数学和力学, 2014, 35(11): 1232-1238.LIU Ai-quan, YIN Yi-hui, LIU Xing-fu. Reconstructed formulas calculating bursting pressures of the special spherical pressure vessels based on experimental data[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1232- 1238.(in Chinese).[13] 化学工程手册编辑委员会. 化工应用数学[M]. 北京: 化学工业出版社, 1983: 23-28, 369-375.Editorial Board of Chemical Engineering Handbook. Chemical application mathematics[M]. Beijing: Chemical Industry Press, 1983:23-28, 369-375 (in Chinese) .[14] 李清, 袁小会, 刘岑, 等. 有效试验数据对钢材机械性能分布规律的影响[J]. 武汉工程大学学报, 2015, 37(4): 69-73.LI Qing, YUAN Xiao-hui, LIU Cen, et al. Validity test data effect on steel mechanical properties distribution law[J]. Journal of Wuhan Institute of Technology, 2015, 37(4): 69- 73. (in Chinese).[15] 刘智敏. 误差与数据处理[M]. 北京: 原子能出版社, 1981.LIU Zhi-min. Errors and data processing[M]. Beijing: Atomic Energy Press, 1981.(in Chinese)[16] 刘小宁, 刘岑, 吴元祥, 等. 超高压圆筒形容器爆破压力计算公式的比较[J]. 机械强度, 2015, 37(2): 373-376.LIU Xiao-ning, LIU Cen, WU Yuan-xiang, et al. Burst pressure caculation formula compare of super-high pressure cylinder vessel[J]. Journal of Mechanical Strength, 2015, 37(2): 373-376. (in Chinese)

相似文献/References:

[1]刘 岑,袁小会,刘 兵,等.钢制单层球形容器爆破压力的计算[J].武汉工程大学学报,2016,38(3):299.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 019]
 LIU Cen,YUAN Xiaohui,LIU Bing,et al.Burst Pressure Calculation of Spherical Vessel with Single-Layer Steel[J].Journal of Wuhan Institute of Technology,2016,38(07):299.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 019]

备注/Memo

备注/Memo:
收稿日期:2015-05-07基金项目:湖北省教育厅科研资助项目(B2014209)作者简介:刘小宁(1963-),男,湖北武汉人. 教授,正高职高级工程师. 研究方向:机械结构与压力容器可靠性等.
更新日期/Last Update: 2015-08-27