|本期目录/Table of Contents|

[1]冯先成1,李 寒2,周 密1,等.基于前馈神经网络的智慧城市空巢老人识别[J].武汉工程大学学报,2015,37(10):33-39.[doi:10. 3969/j. issn. 1674-2869. 2015. 10. 007]
 ,GUO Yao-fei,et al.Recognition of empty-nest elders in intelligent city based on feedforward neural network[J].Journal of Wuhan Institute of Technology,2015,37(10):33-39.[doi:10. 3969/j. issn. 1674-2869. 2015. 10. 007]
点击复制

基于前馈神经网络的智慧城市空巢老人识别(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
37
期数:
2015年10期
页码:
33-39
栏目:
机电与信息工程
出版日期:
2015-10-31

文章信息/Info

Title:
Recognition of empty-nest elders in intelligent city based on feedforward neural network
文章编号:
1674-2869(2015)10-0033-07
作者:
冯先成1李 寒2周 密1郭耀飞1
1.智能机器人湖北省重点实验室(武汉工程大学),湖北 武汉 4302052.北京汉通达科技有限公司,北京100081
Author(s):
FENG Xian-cheng1LI Han2ZHOU Mi1GUO Yao-fei1
1. Hubei Key Laboratory of Intelligent Robot (Wuhan Institute of Technology),Wuhan 430205, China; 2. MTCS Systems Engineering Co. Ltd., Beijing 100081, China
关键词:
智慧城市构造识别函数前馈神经网络空巢老人
Keywords:
intelligent city recognition function feedforward neural networks empty-nest elders
分类号:
TP183
DOI:
10. 3969/j. issn. 1674-2869. 2015. 10. 007
文献标志码:
A
摘要:
随着社会老龄化进程的加快,空巢老人的数量呈上升趋势,老龄化成为一个不容忽视的社会问题. 通过对空巢老人手机用户的识别的数据分析,提出识别信息完整的用户与信息缺失的用户的两个模型. 基于正常的用户信息表,空巢老人及其子女的数量可以准确识别,当用户的信息不够充足时,采用前馈神经网络算法,结果显示其空巢老人的识别率可以达到73.3%. 通过识别模型,及时更新空巢老人的数据,为统计局等政府部门提供了简单有效的数据分析,有助于建设智慧城市,促进社会和谐.
Abstract:
Aimed at the social problems associated with empty-nest elders, two recognition models of empty-nest elders were presented based on the analysis of calling list and user information table. The empty-nest elders and their children' number can be identified by recognition function based on the normal user information table. Meanwhile the recognition accuracy rate can reach 73.3% using feedforward neural network algorithm when the information of a user is not sufficient. Moreover the database empty-nest elders can be timely updated by the recognition models, which can provide effective data for statistics bureau and other government departments. It is beneficial to the development of intelligent city and harmonious society.

参考文献/References:

[1] 沈斌,漆奋平,江维,等.基于BP网络的超滤膜分离中药成分的分析与实现[J].武汉工程大学学报,2009,31(9):55-58.SHEN Bin,QI Fen?鄄ping,JIANG Wei.Analysis and implement of separatte chinese medicine based on BP network[J]. Journal of Wuhan Institute of Technology,2009,36 (9):55-58. (in Chinese)[2] 黄登斌,夏学知.基于用户分类信息的空巢老人挖掘模型[J].计算机与数字工程,2013(3):440-441.HUANG Deng?鄄bin,XIA Xue?鄄zhi. Mining model of empty nester based on the classification of the users information[J]. Computer & Digital Engineering, 2013(3):440-441.(in Chinese)[3] 李翔,苏成,王韶君,等.基于模糊神经网络的综合评判方法[J].计算机工程,2009,35(6):200-203.LI Xiang,SU Cheng,WANG Shao?鄄jun.Comprehensive evaluation method based on fuzzy neural network[J].Computer Engineering,2009,35(6):200-203.(in Chinese)[4] 王勇,付志红,张淮清.基于前馈神经网络的电网基波高精度检测[J].电网技术,2011(8):124-128.WANG Yong,FU Zhi-hong,ZHANG Huai-qing.High precision detection of fundamental of power grid based on back propagation neural network[J]. Power System Technology,2011(8):124-128.(in Chinese)[5] 刘瑞叶,黄磊.基于动态神经网络的风电场输出功率预测[J].电力系统自动化,2012(11):19-22.LIU Rui-ye,HUANG Lei.Wind power forecasting based on dynamic neural networks[J]. Automation of electric Power Systems,2012(11):19-22. (in Chinese)[6] 蔡信,李波,汪宏华.基于神经网络模型的动力电池SOC估计研究[J].机电工程,2015(1):128-132.CAI Xin,LI Bo,WANG Hong-hua.Estimation of state-of-charge for electric vehicle power battery with neural network method[J].Journal of Mechanical & Electrical Engineering,2015(01):128-132.(in Chinese)[7] 杨帆,姜勇,杨元君.信息融合技术在矿井安全监测系统中的应用[J].武汉工程大学学报,2014,36(5):64-67.YANG Fan,JIANG Yong,YANG Yuan-jun.Information fusion technology in application of mine safety monitoring system[J].Journal of Wuhan Institute of Technology,2014,36(5):64-67.(in Chinese)[8] 刘扬,张振海.小波神经网络的无刷直流电机转子位置检测方法[J].武汉工程大学学报,2014(10):66-70.LIU Yang,ZHANG Zhen-hai.Rotor position detection method of brushless motor based on wavelet neural Network [J].Journal of Wuhan Institute of Technology,2014(10):66-70. (in Chinese)

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2015-09-08基金项目:住房和城乡建设部科研项目(2015-R3-007);武汉工程大学研究生教育创新基金(CX2014045).作者简介:冯先成(1968-),男,安徽庐江人,副教授,硕士.研究方向:光纤网络通信及智慧城市技术.
更新日期/Last Update: 2015-11-08