|本期目录/Table of Contents|

[1]何成万,王 格.一种基于领域情感词典的网络评论倾向分析方法[J].武汉工程大学学报,2015,37(10):45-50.[doi:10. 3969/j. issn. 1674-2869. 2015. 10. 009]
 .Method of semantic orientation analysis based on domain specific sentiment dictionary[J].Journal of Wuhan Institute of Technology,2015,37(10):45-50.[doi:10. 3969/j. issn. 1674-2869. 2015. 10. 009]
点击复制

一种基于领域情感词典的网络评论倾向分析方法(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
37
期数:
2015年10期
页码:
45-50
栏目:
机电与信息工程
出版日期:
2015-10-31

文章信息/Info

Title:
Method of semantic orientation analysis based on domain specific sentiment dictionary
文章编号:
1674-2869(2015)10-0045-06
作者:
何成万王 格
武汉工程大学计算机科学与工程学院,湖北 武汉 430205
Author(s):
HE Cheng-wanWANG Ge
School of Computer Science and Engineering, Wuhan Institute of Technology,Wuhan 430205,China
关键词:
-
Keywords:
semantic orientation analysis sentiment dictionary assistant dictionary set
分类号:
TP311
DOI:
10. 3969/j. issn. 1674-2869. 2015. 10. 009
文献标志码:
A
摘要:
移动互联网的快速发展使得网络上数据量剧增. 如何从纷繁复杂的信息中提取出对人们有用的信息就成为一个亟待解决的课题. 本文提出一种改进的基于情感词典的倾向分析方法,该方法在情感词典中加入领域情感词,并且通过构建辅助词典集来进行辅助分析. 同时给出了一种半自动的词典维护方法来发现新词和更新词典集. 通过对手机领域的评论进行文本级的情感倾向分析,正面情感分析的准确率和召回率达到0.713和0.769,负面情感的准确率和召回率达到0.738和0.706,与传统基于情感词典的方法相比准确率和召回率都有较大提高.
Abstract:
The volume of data on the network increases remarkably with the rapid development of mobile network. How to extract useful information from the complicated information becomes an urgent problem to be solved. An improved semantic orientation analysis was proposed, in which the sentiment dictionary was expanded with domain emotional words, and an auxiliary dictionary set was constructed for assistant analysis. To maintain all the dictionaries, a semi-automatic method was also presented. The results in the domain of mobile phone show that the rates of accuracy and recall of positive emotion analysis are 0.713 and 0.769, and the rates of accuracy and those of negative emotion analysis are 0.738 and 0.706, which are improved compared with using the traditional method.

参考文献/References:

[1] 黄萱菁,张奇,吴苑斌.文本情感倾向分析[J].中文信息学报,2011,10(9):118-126.HUANG Xuan jing,Zhang Qi, WU Yuan bin. A Survey on Sentiment Analysis[J]. Journal of Chinese information,2011,10(9) 118-126.(in Chinese)[2] Turney PD. Thumbs up or thumbs down semantic orientation applied to unsupervised classification of views[C]//Proceedings of the 40th annual meeting on association for computational linguistics. Philadelphia: Association for Computational Linguistics,2002:417-424.[3] Pang B, Lee L. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales[C]//Proceedings of the 43rd annual meeting on association for computational linguistics. New York: NJ,ACM,2005:115-124.[4] Nozomi Kobayashi, Kentaro Inui, Yuji Matsumoto. Collecting Evaluation Expressions for Opinion ExtractionIn[C]//Proceedings of the 1st International Joint Conference on Natural Language Processing(IJCNLP).2004:584–589.[5] Nozomi Kobayashi, Kentaro Inui, Yuji Matsumoto. Extracting Aspect-Evaluating and Aspect-of Relatons in Opinion mining[C]//Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Prague, June 2007:1065-1074.[6] Marrese-Taylor E, Velasquez J D, Bravo-Marquez F. A novel deterministic approach for aspect-based opinion mining in tourism products reviews[J]. Expert Systems with Applications,2014,41(17):7764-7775. [7] Penalver-Martinez I, Garcia-Sanchez F,Valencia-Garcia R,et al. Feature-based opinion mining through ontologies[J]. Expert System with Applications,2014, 41(13):5995-6008.[8] 朱嫣岚,闵锦,周雅倩,等.基于HowNet的词汇语义倾向计算[J].中文信息学报, 2006,20(1):14-20.ZHU Yan-lan,MIN Jin,ZHOU Ya-qian,etc. Semantic orientation computing based on hownet[J]. Journal of Chinese Information,2006,20(1):14-20.(in Chinese)[9] 孙建旺,吕学强,张镭翰.基于词典与机器学习的中文微博情感分析研究[J].计算机应用与软件, 2014,31(7):177-181.SUN Jianwang LV Xueqiang Zhang Leihan. On sentiment analysis of chinese microblogging based on lexicon and machine learning[J]. Journal of Computer Applications and Software,2014,31(7):177-181.(in Chinese)[10] 肖红,许少华.基于句法分析和情感词典的网络舆情倾向性分析研究[J].小型微型计算机系统, 2014,35(4):811-813.XIAO Hong,XU Shao- hua. Analysis on web public opinion orientation based on syntactic parsing and emotional dictionary[J]. Small Microcomputer system, 2014,35(4):811-813.(in Chinese)[11] 王勇,吕学强,姬连春,等.基于极性词典的中文微博客情感分类[J].计算机应用与软件,2014,31(1):35-37,126.WANG Yong, LV Xueqiang, JI Lianchun,et al. Sentiment classification for chinese microblogging based on polarity lexicons [J]. Computer Applications and Software, 2014,31(1):35-37,126.(in Chinese)[12] 徐晓丹,段正杰,陈中育.基于扩展情感词典及特征加权的情感挖掘方法[J]. 山东大学学报(工学版), 2014,144(6):15-18,69. XU Xiaodan,DUAN Zhengjie,CHEN Zhongyu. The sentiment mining method based on extended sentiment dictionary and integrated features[J]. Journal of Shandong University(engineering science),2014,144(6):15-18,69.(in Chinese)[13] 谢松县,刘博,王挺. 应用语义关系自动构建情感词典[J]. 国防科技大学学报, 2014,36(3):111-115.XIE Songxian,LIU Bo,WANG Ting. Applying semantic relations to construct sentiment lexicon automaticlly [J]. Journal of National University of Defense Technology,2014,36(3):111-115.(in Chinese)[14] 周咏梅,阳爱民,林江豪.中文微博情感词典构建方法[J]. 山东大学学报(工学版), 2014,4(3):36-40.ZHOU Yongmei,YANG Aimin,LIN Jianghao. A method of building Chinese microblog sentiment lexicon[J]. Journal of Shandong University (engineering science), 2014,4(3):36-40.(in Chinese)[15] 周强,冯松岩. 构建知网关系的网状表示[J].中文信息学报,2000,14(6):21-27. ZHOU Qiang ,FENG Song-yan. Build a relation network representation for How-net. Journal of Chinese information,2000,14(6):21-27.(in Chinese)[16] 郭凯. 基于评论情感的微博谣言检测研究[D]. 大连:大连理工大学,2014.GUO Kai. The research of Microblog Rumors Dection Based on Comments Sentiment [D]. Dalian: dalian university of technology,2014.(in Chinese)[17] 蔡小艳,寇应展,沈巍,等. 汉语词法分析系统ICTCLAS在Nutch一0.9中的应用与实现[J]. 军械工程学院学报, 2008, 20(5):63-70.CAI Xiao yan, KOU Ying zhan , Shen Wei,et al. The Application and Realization of ICTCLAS on Nutch?鄄0.9[J]. Journal of ordnance engineering college,2008, 20(5):63-70.(in Chinese)

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2015-09-14基金项目:国家自然科学基金(61272115,60873024)作者简介:何成万(1970-),男,湖北荆门人,教授,博士. 研究方向:软件工程.
更新日期/Last Update: 2015-11-08