|本期目录/Table of Contents|

[1]夏巨江,李 芳*.飞秒激光耐高温光纤光栅传感器的制备[J].武汉工程大学学报,2016,38(2):200-203.[doi:10. 3969/j. issn. 1674-2869. 2016. 02. 018]
 XIA Jujiang,LI Fang*.Fabrication of High-Temperature-Resistant Fiber Grating Sensor by Femtosecond Laser[J].Journal of Wuhan Institute of Technology,2016,38(2):200-203.[doi:10. 3969/j. issn. 1674-2869. 2016. 02. 018]
点击复制

飞秒激光耐高温光纤光栅传感器的制备
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年2期
页码:
200-203
栏目:
机电与信息工程
出版日期:
2016-04-30

文章信息/Info

Title:
Fabrication of High-Temperature-Resistant Fiber Grating Sensor by Femtosecond Laser
作者:
夏巨江李 芳*
武汉工程大学理学院,湖北 武汉 430205
Author(s):
XIA Jujiang LI Fang*
School of science,Wuhan Institute of Technology, Wuhan430205, China
关键词:
光纤传感器光纤光栅高温测量飞秒激光
Keywords:
fiber sensors fiber gratings high-temperature measurementfemtosecond laser
分类号:
TN253
DOI:
10. 3969/j. issn. 1674-2869. 2016. 02. 018
文献标志码:
A
摘要:
针对传统光纤光栅传感器由于折射率调制量导致温度稳定性差的缺点,利用了飞秒激光诱导折射率变化的机理制备了一种耐高温的光纤光栅温度传感器. 首先采用800 nm飞秒激光结合相位掩膜板法在标准通信光纤上写制了光纤布拉格光栅传感器,然后通过高温退火实验对该传感器在900 ℃下的温度稳定性进行了测量,最后采用线性拟合的方法得到了传感器的温度灵敏度系数. 实验结果表明,该传感器在900 ℃下具有较好的温度稳定性,在温度为100 ℃到900 ℃范围内温度灵敏度系数达到1.27×10-11 m/℃.
Abstract:
Aimed at the poor temperature stability of traditional fiber grating sensors, a heatresistant fiber bragg grating (FBG) sensor was fabricated by the femtosecond laser based on the mechanism of induced refractive index change. Firstly, the 800nm femtosecond laser combined with the phase mask plate method was adopted to write FBG sensors in the standard telecommunication fiber. Then the temperature stability of the sensor was measured by the high temperature annealing experiment under 900℃. Finally, the temperature sensitivity of the sensor was obtained by using linear fitting. The experimental results show that the sensor has a very high temperature stability under 900 ℃, and the sensitivity coefficient can achieve 1.27×10-11 m/℃ in the range of 100 -900 ℃.

参考文献/References:

[1] 陈小刚, 黄德修, 元秀华,等. 基于超连续谱和超结构光纤光栅的波分复用/光码分复用系统[J]. 中国激光, 2008,35(1):77-81.
CHEN X G, HUANG D X, YUAN X H, et al. Wavelength division multiplexing/optical code divison multiplexing system based on supercontinuum and supersturctured fiber bragg grating [J] . Chinese journal of lasers,2008,35(1):77-81.
[2] 裴丽, 简水生, 延凤平, 等. 4×10Gb/s 400 km啁啾光纤光栅色散补偿研究[J]. 物理学报, 2003,52(3):615-619.
PEI L, JIAN S S, YAN F P, et al. Reasearch on the 4×10 Gb/s 400 km d dispersion compensation by chirped optical fiber grating [J]. Acta physica sinica, 2003, 52(3):615-619.
[3] 裴丽, 宁提纲, 李唐军, 等. 高速光通信系统中光纤光栅色散补偿研究[J]. 物理学报, 2005, 54(4):1630-1635.
PEI L, NING T G, LI T J, et al. Reaserch on PMD compensation of cfbg in high speed optical communication system[J]. Chinese journal of lasers, 2005, 54(4):1630-1635.
[4] 姜德生, 何伟. 光纤光栅传感器的应用概况[J]. 光电子, 2002, 13(4):421-430.
JIANG D S, HE W. Review of application for fiber bragg grating sensors [J]. Journal of optoelectronics laser, 2002, 13(4):421-430.
[5] 田石柱, 曹长城, 王大鹏. 光纤光栅传感器监测混凝土简支梁裂缝的实验研究[J]. 中国激光, 2013, 40(1):1-5.
TIAN S Z, CAO C C, WANG D P. Experimental study on fiber grating sensor monitoring the crack of concrete [J]. Chinese journal of lasers, 2013, 40(1):1-5.
[6] 贾子光, 任亮, 李宏男, 等. 应用光纤光栅传感器监测符合材料固化过程[J]. 中国激光, 2010, 37(5):1299-1303.
JIA Z G, REN L, LI H N, et al. Application of fiber bragg grating sensors in monitoring curing process of carbon fiber composite[J]. Chinese journal of lasers, 2010, 37(5):1299-1303.
[7] BAKER S R, ROURKE H N, BAKER V,et al. Thermal decay of fiber bragg gratings written in boron and germanium codoped silica fiber [J]. Journal of lightwave technolgy, 1997,15(8):1470-1477.
[8] GROOTHOFF N, CANNING J. Enhanced type gratings for high-temperature operation[J]. Optics letters, 2004, 29(20):2360-2362.
[9] FOKINE M. Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers [J]. Journal of the optical society of America B, 2002,19(8):1759-1765.
[10] TRPKOVSKI S, TRPKOVSKI D, KITCHER J , et al. High- temperature-resistant chemical composition bragg gratings in -doped optical fiber [J]. Optics letters, 2002, 27(22):1974-1976.
[11] CANNING J, STEVENSON M, BANDYOPADHYAY S,et al. Extreme silica optical fiber gratings[J]. Sensors, 2008, 8(10):6448-6425.
[12] ZHU J J, ZHANG A P, ZHOU B,et al. Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers[J]. Optics communication, 2011,31(1):2808-2811.
[13] MARTINEZ A, KHRUSHCHEV I, BENNION Y I. Thermal properties of fiber bragg gratings inscribed point-by-point by infrared femtosecond laser[J]. Electronics letters, 2005, 41(4):224-225.
[14] MIHAILOVS J, SMELSER C W, GROBNIC D, et al. Bragg gratings written in all and Ge-doped core fibers with 800 nm femtosecond radiation and a phase mask [J]. Journal of lightwave technology, 2004, 22(1):94-100.
[15] GROBNIC D, MIHAILOV S, SMELSER J W,et al. Sapphire fiber bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications[J]. IEEE photonics letters, 2004,16(11):2505-2507.
[16] 乔学光, 贾振安, 傅海威, 等. 光纤光栅温度传感理论与实验[J]. 物理学报, 2004, 53(2):494-497.
QIAO X G, JIA Z N, FU H W, et al. Theory and experiment about in-fiber Bragg grating temperature sensing [J]. Acta physica sinica, 2004, 53(2):494-497.
[17] 黎敏, 廖延彪. 光纤传感器及其应用技术[D]. 武汉:武汉大学, 2012.

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2016-05-03