|本期目录/Table of Contents|

[1]王 俊,徐 莉*,闫云君*.小球藻抽脂残留物培养产气肠杆菌的制氢研究[J].武汉工程大学学报,2016,38(4):313-318.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 001]
 MUHAMMAD Jawed,WANG Jun,XU Li*,et al.Cultivation of Enterobacter Aerogenes for Hydrogen Production with Lipid Extracted Microalgal Biomass Residues[J].Journal of Wuhan Institute of Technology,2016,38(4):313-318.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 001]
点击复制

小球藻抽脂残留物培养产气肠杆菌的制氢研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年4期
页码:
313-318
栏目:
化学与化学工程
出版日期:
2016-08-28

文章信息/Info

Title:
Cultivation of Enterobacter Aerogenes for Hydrogen Production with Lipid Extracted Microalgal Biomass Residues
作者:
王 俊徐 莉*闫云君*
华中科技大学生命科学与技术学院,湖北 武汉 430074
Author(s):
MUHAMMAD Jawed WANG JunXU Li* YAN Yunjun*
School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
关键词:
关键词:产气肠杆菌生物制氢小球藻提脂残留物响应面法
Keywords:
Enterobacter aerogenes biohydrogen lipid extracted microalgal biomass residues response surface methodology
分类号:
Q93-335
DOI:
10. 3969/j. issn. 1674?2869. 2016. 04. 001
文献标志码:
A
摘要:
摘 要:为使高效产氢产气肠杆菌能够运用到实际生产中,探索并且优化以小球藻抽脂残留物的水解产物为底物的厌氧批次产氢发酵实验参数.采用中心组合设计,通过三次平行实验取得的数值,拟合得到反映温度、接种量和pH值与产氢量之间关系的多元二次回归模型,以产氢率为响应值,进行响应面分析.方差分析结果显示,该模型的显著性和可靠性较高,拟合效果良好.该模型预测出最佳产氢结果为54.22 mL/g 小球藻抽脂残留物,产氢条件为温度37.55 ℃,接种量12.25%,pH值5.95.进行了厌氧批次发酵产氢验证实验,实际结果为小球藻抽脂残留物的产氢量为54.61 mL/g,与预测值十分接近,说明该模型能较好反应三因素对产氢量的影响.优化了高效产氢菌利用廉价底物发酵产氢的运行条件,为实现生产氢气的过程与有机废弃物无害化处理相耦合提供了新思路.
Abstract:
To examine the feasibility of cultivating Enterobacter aerogenes for hydrogen production with lipid extracted microalgal biomass residues, the anaerobic batch fermentations from microalgal hydrolysate were conducted and their key parameters were optimized using response surface methodology. The central composite designs were performed, and a quadratic regression model based on temperature, pH, inoculum and hydrogen yield was obtained from the triplicate experimental data. The analysis of variances indicates that the model has good fitting degree. The predicted maximum hydrogen yield of 54.22 mL/g of lipid extracted microalgal biomass residues was obtained when the temperature, pH and inoculum were respectively at 37.55 ℃, 5.95 and 12.25%. The confirmatory experiments showed that the mutant evolved hydrogen yield of 54.61 mL/g of lipid extracted microalgal biomass residues in the optimal conditions. The coincident result verified the practicability of the model. This study indicates that a strategy of cultivating Enterobacter aerogenes for hydrogen production with lipid extracted microalgal biomass residues has great potential for the large scale of production.

参考文献/References:

[1] SODE K, WATANABE M, MAKIMOTO H, et al. Biohydrogen [M]. United States: Springer, 2014.[2] ARGUN H, KARGI F. Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview [J]. International journal of hydrogen energy, 2011, 36(13): 7443-7459.[3] LEE H, VERMAAS W F J, RITTMANN B E. Biological hydrogen production: prospects and challenges [J]. Trends in biotechnology, 2010, 28(5): 262-271.[4] TURNER J A. Sustainable hydrogen production [J]. Science, 2004, 305(5686): 972-974[5] KOTHARI R, SINGH D P, TYAGI V V, et al. Fermentative hydrogen production - an alternative clean energy source [J]. Renewable and sustainable energy reviews, 2012, 16(4): 2337-2346.[6] ZHANG C, LU F, XING X. Bioengineering of the enterobacter aerogenes strain for biohydrogen production [J]. Bioresource technology, 2011, 102(18): 8344-8349[7] 王姝玉,王俊,徐莉,等. 同源过表达fnr、pncB和fdhF对克雷伯菌产氢代谢的影响 [J]. 生物工程学报, 2013, 29(9): 1278-1289.WANG S Y, WANG J, XU L, et al. Enhanced biohydrogen productio by homologous over-expression of fnr, pncB, fdhF in Klebsiella sp. HQ-3 [J]. Chinese journal of biotechnology, 2013, 29(9): 1278-1289.[8] LEE D, CHIU L. Development of a biohydrogen economy in the United States, China, Japan, and India: with discussion of a chicken-and-egg debate [J]. International journal of hydrogen energy, 2012, 37(20): 15736- 15745。[9] SINHA P, PANDEY A. An evaluative report and challenges for fermentative biohydrogen production [J]. International journal of hydrogen energy, 2011, 36(13): 7460-7478.[10] LIN C, LAY C, SEN B, et al. Fermentative hydrogen production from wastewaters: a review and prognosis [J]. International journal of hydrogen energy, 2012, 37(20): 15632-15642[11] KAPDAN I K, KARGI F. Bio-hydrogen production from waste materials [J]. Enzyme and microbial technology, 2006, 38(5): 569-582.[12] WAHLEN B D, WILLIS R M, SEEFELDT L C. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures [J]. Bioresource technology, 2011, 102(3): 2724-2730[13] JAMIL Z, MOHAMAD ANNUAR M S, IBRAHIM S, et al. Optimization of phototrophic hydrogen production by Rhodopseudomonas palustris PBUM001 via statistical experimental design [J]. International journal of hydrogen energy, 2009, 34(17): 7502-7512.[14] CHONG M, ABDUL R N A, RAHIM R A, et al. Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology [J]. International journal of hydrogen energy, 2009, 34(17): 7475-7482.[15] LIU Q, ZHANG X, ZHOU Y, et al. Optimization of fermentative biohydrogen production by response surface methodology using fresh leachate as nutrient supplement [J]. Bioresource technology, 2011, 102(18): 8661-8668.[16] WANG J, YU W Y, XU L, et al. Effects of increasing the NAD(H) pool on hydrogen production and metabolic flux distribution in Enterobacter aerogenes mutants [J]. International journal of hydrogen energy, 2013, 38 (30): 13204-13215.[17] GUO W Q, REN N Q,WANG X J, et al. Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology [J]. Bioresource technology, 2009, 100(3): 1192-1196.[18] HAY J X W, WU T Y, TEH C Y, et al. Optimized growth of Rhodobacter sphaeroides O.U.001 using response surface methodology (RSM) [J]. Journal of scientific and industrial research,2012,71 (2):149-154.[19] NGUYEN T A D,KIM J P, MI S K, et al. Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation [J]. International journal of hydrogen energy, 2008, 33(5): 1483-1488.

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2016-07-29