|本期目录/Table of Contents|

[1]张正风.基于LS-SVM苯乳酸发酵过程的建模[J].武汉工程大学学报,2016,38(4):333-336.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 005]
 ZHANG Zhengfeng.Modeling of Phenyllactic Acid Fermentation Process Based on Least Square Support Vector Machine[J].Journal of Wuhan Institute of Technology,2016,38(4):333-336.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 005]
点击复制

基于LS-SVM苯乳酸发酵过程的建模(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年4期
页码:
333-336
栏目:
化学与化学工程
出版日期:
2016-08-28

文章信息/Info

Title:
Modeling of Phenyllactic Acid Fermentation Process Based on Least Square Support Vector Machine
作者:
张正风
徐州生物工程职业技术学院信息中心,江苏 徐州 221006
Author(s):
ZHANG Zhengfeng
Information Center of Xuzhou Vocational College of Bioengineering, Xuzhou 221006, China
关键词:
发酵建模径向基核函数支持向量机最小二乘支持向量机
Keywords:
fermentation modeling kernel of Radial Basis Function SVM LS-SVM
分类号:
TQ92
DOI:
10. 3969/j. issn. 1674?2869. 2016. 04. 005
文献标志码:
A
摘要:
为了解决苯乳酸发酵过程中关键生物参数难以直接在线检测的问题,提出了基于最小二乘支持向量机(LS-SVM)的软测量建模方法. 通过使用径向基核函数来对菌体浓度、苯乳酸浓度建立模型,对建模的理论进行了分析和并进行了仿真研究,同时还采用支持向量机对过程进行了建模,对两种方法的优缺点进行了比较. 结果表明,基于LS-SVM的建模方法预测精度高、跟踪性能好,能提高在线预估的效率,非常适合于苯乳酸发酵过程的在线预估.
Abstract:
To solve the difficulties of online measurement for crucial biological variables in the phenyllactic acid fermentation process, a soft sensor modeling method was proposed based on the least squares support vector machine (LS-SVM), and the model for concentration of mycelium and phenyllactic acid was built by kernel of Radial Basis Function. Theoretical analysis and simulation?study of the modeling was investigated, and a second modeling process was constructed by the support vector machine. Finally, the effects of the two methods modeling were compared. The results show that the modeling method based on the LS-SVM has the advantages of accuracy predition, good tracking performance, improving efficiency of on-line predition, which is very suitable for the on-line estimation of the phenyllactic acid fermentation process.

参考文献/References:

[1] 高学金,王普,孙崇正,等. 基于动态SVM的发酵过程建模[J]. 仪器仪表学报,2006,27(11):1497-1500. GAO X J,WANG P,SUN C Z,et al. Modeling of fermentation process based on dynamic SVM[J]. Chinese journal of scientific instrument,2006,27(11):1497-1500. [2] 李兴峰,江波. 乳酸菌来源的苯乳酸及其对食源性致病菌的抑菌活性[J]. 中国食品学报,2014,35(3):250-253. LI X F,JIANG B. Lactic acid bacteria from lactic acid bacteria and their antimicrobial activity against food borne pathogens[J]. Journal of Chinese institute of food science and technology,2014,35(3):250-253. [3] 阎威武,朱宏栋,邵惠鹤. 基于最小二乘支持向量机的软测量建模[J]. 系统仿真学报,2003(10):189-191.YAN W W,ZHU H D,SHAO H H. Soft sensor modeling based on least square support vector machine[J]. Journal of system simulation,2003(10):189-191. [4] 黄丽,孙玉坤,嵇小辅,等. 基于tPSO-BPNN的赖氨酸发酵软测量[J]. 仪器仪表学报,2010,31(14):2317-2320. HANG L,SUN Y K,JI X F,et al. Soft sensing of lysine fermentation based on tPSO-BPNN[J]. Chinese journal of scientific instrument,2010,31(14):2317-2320. [5] SUN J, FENG B,XU W B. Particles swam optimization with particles having quantum behavior[C]. USA:Proceedings of IEEE conference on evolutionary computation,2004(1):325-331. [6] 田雨波. 混合神经网络技术[M]. 北京:科学出版社,2009. [7] 陈凯,张静怡. 基于RBF网络的传动滚筒测温系统[J]. 仪表技术与传感器,2011(9):56-58. CHEN K,ZHANG J Y. Temperature measurement system of transmission roller based on RBF network[J]. Instrument technique and sensor,2011(9):56-58. [8] 袁晓芳,王耀南. 基于混沌优化算法的支持向量机参数选取方法[J]. 控制与决策,2006,21(1):111-117. YUAN X F,WANG Y N. Parameter selectionof support vector machine based on chaos optimization algorithm[J]. Control and decision,2006,21(1):111-117. [9] 刘毅,王海清. 采用最小二乘支持向量机的青霉素发酵过程建模研究[J]. 生物工程学报,2006,22(5):144-149. LIU Y,WANG H Q. Modeling of penicillin fermentation process using least square support vector machine[J]. Chinese journal of biotechnology,2006,22(5):144-149. [10] 张蓓,熊明勇,张克旭. 人工神经网络在发酵工业中的应用[J]. 生物技术通讯,2003,14(1):74-76. ZHANG B,XIONG M Y,ZHANG K X. Application of artificial neural network in fermentation industry[J]. Letters in biotechnology,2003,14(1):74-76. [11] AN S,LIU W,VENKATESH S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge re-gression[J]. Pattern recognition,2007,40(8):2154-2162. [12] 周兆勇,汪西莉,曹燕龙. 基于GA优选参数的SVM水质评价方法研究[J]. 计算机工程,2008,44(4):190-193. ZHOU Z Y,WANG X L,CAO Y L. Study on SVM water quality evaluation method based on GA optimization parameter[J]. Computer engineering,2008,44(4):190-193.

相似文献/References:

[1]苏腾甲,朱雄伟,张佑红*,等.果胶酶生产菌株的分离及其产酶条件优化[J].武汉工程大学学报,2012,(4):15.
 SU Teng\|jia,ZHU Xiong\|wei,ZHANG You\|hong,et al.Separation of one pectinase strain and optimization for it’s production of enzymes[J].Journal of Wuhan Institute of Technology,2012,(4):15.
[2]吴晗平,胡大军,吴晶,等.舰载光电跟踪伺服系统的建模与仿真[J].武汉工程大学学报,2012,(7):54.[doi:103969/jissn16742869201207012]
 WU Han\|ping,HU Da\|jun,WU Jing,et al.Modeling and simulation of ship-borne optoelectronic tracking servo-system[J].Journal of Wuhan Institute of Technology,2012,(4):54.[doi:103969/jissn16742869201207012]
[3]胡国元,李超影,陈默,等.香菇多糖和金针菇多糖的提取及其抑菌活性[J].武汉工程大学学报,2013,(06):30.[doi:103969/jissn16742869201306006]
 HU Guo yuan,LI Chao ying,CHEN Mo,et al.Extraction and antimicrobial activities of polysaccharide from Lentinus edodes and Flammulina velutipes[J].Journal of Wuhan Institute of Technology,2013,(4):30.[doi:103969/jissn16742869201306006]
[4]吴 红,雷于国,胡国元*.功能酵素的研究进展[J].武汉工程大学学报,2020,42(06):616.[doi:10.19843/j.cnki.CN42-1779/TQ.202005023]
 WU Hong,LEI Yuguo,HU Guoyuan*.Research Progress of Functional Jiaosu[J].Journal of Wuhan Institute of Technology,2020,42(4):616.[doi:10.19843/j.cnki.CN42-1779/TQ.202005023]

备注/Memo

备注/Memo:
更新日期/Last Update: 2016-07-29