[1] CHISTI Y. Biodiesel from microalgae[J]. Biotechnology advances, 2007, 25 (3): 294-306. [2] 沈丰菊. 利用污水大规模培养微藻生产生物柴油技术研究现状[J]. 农业工程技术(新能源产业), 2012(2): 19-22. SHEN F J. Study on cultivation of microalgae on wastewater to produce lipid[J]. Agricultural engineering technology, 2012(2):19-22. [3] VOLKMAN J K, JEFFRE S W, NICHOLS P D, et al. Fatty acid and lipid composition of 10 species of microalgae used in mariculture[J]. Journal of experimental marine biology and ecology, 1989, 128 (3): 219-240. [4] 王逸云,王长海. 无菌条件下的小球藻培养条件优化[J]. 烟台大学学报(自然科学与工程版), 2006, 19 (2): 125-129. WANG Y Y, WANG C H. Culture condition optimization of Chlorella sp. [J]. Journal of Yantai university(natural science and engineering edition),2006,19(2): 125-129. [5] 陆贻超,王丽丽,刘双,等. CO2 浓度对小球藻生长和生化组成的影响[J]. 可再生能源, 2013, 31(7): 64-69. LU Y C, WANG L L, LIU S, et al. Effect of CO2 concentration on growth and biochemical component of Chlorella sorokiniana[J]. Renewable energy resources, 2013, 31(7): 64-69. [6] CONVERTI A, CASAZZA A A, ORTIZ E Y, et al. Effect of temperature and nitrogen concentration on the growth and lipid content of nannochloropsis oculata and chlorella vulgaris for biodiesel production[J]. Chemical engineering and processing: process intensification, 2009, 48 (6): 1146-1151. [7] 胡慧慧. 培养条件对小球藻生长和油脂积累的影响[D]. 宁波: 宁波大学, 2012. [8] 欧阳峥嵘,温小斌,耿亚红, 等. 光照强度, 温度, pH, 盐度对小球藻 (Chlorella) 光合作用的影响[J]. 植物科学学报, 2010, 28 (1): 49-55. OUYANG Z R, WEN X B, GENG Y H, et al. The effects of light intensities, temperatures, pH and sanilities on photosynthesis of Chlorella[J]. Journal of Wuhan botanical research, 2010, 28 (1): 49-55. [9] CRESSWELL R C, REES T A V, SHAH N. Algal and cyanobacterial biotechnology[M]. Manhattan:Longman scientific & technical, Wiley, 1989. [10] FUENTES M R, FERN?NDEZ G A, P?REZ J S, et al. Biomass nutrient profiles of the microalga Porphyridium cruentum[J]. Food chemistry, 2000, 70 (3): 345- 353. [11] WEISENSEEL M H, MEYER A J. Bioelectricity, gravity and plants[J]. Planta, 1997, 203 (1): S98- S106. [12] BRAUN M, BUCHEN B, SIEVERS A. Electron microscopic analysis of gravisensing Chara rhizoids developed under microgravity conditions[J]. The federation of American societies for experimental biology journal, 1999, 13 (sup901): S113-S120. [13] HU Z, LIU Y. Cell responses of Dunaliella salina FACHB 435 (Green Alga) to microgravitational stimulation by clinorotation[J]. Chinese science bulletin, 1998(20): 1737-1742. [14] 陈德辉,章宗涉,陈坚. 藻类批量培养中的比增长率最大值[J]. 水生生物学报,1998(1):26-32. CHEN D H, ZHANG Z S, CHEN J. Maximum specific growth rate of six algal species determined in batch culture[J]. Acta hydrobiologica sinica, 1998(1):26-32. [15] 刘香华,刘雷,曾惠卿. 不同碳源和光照对小球藻生长及产油脂的影响[J]. 安全与环境学报,2012, 12(3):6-10. LIU X H, LIU L, ZENG H Q. Effects of different carbon sources and light intensities on the growth and the lipid properties of Chlorella vulgaris[J]. Journal of safety and environment, 2012, 12(3):6-10. [16] 王秀锦,李兆胜,邢冠岚,等. 蛋白核小球藻 Chlorella pyrenoidosa-15 的异养培养条件优化及污水养殖[J]. 环境科学, 2012, 33 (8): 2735-2740. WANG X J, LI Z S, XING G L, et al. Optimization of Chlorella pyrenoidosa-15 photoheterotrophic culture and its use in wastewater treatment[J]. Environment science, 2012, 33 (8): 2735-2740. [17] 裴静琛,王能达,童伯伦,等. 航天因素对螺旋藻生长的影响[J] 航天医学与医学工程,1992,5(4): 277-280. PEI J C, WANG N D, TONG B L, et al. Influence of space-flight factors on growth of Spirulina[J]. Space medicine and medical engineering, 1992,5(4): 277- 280. [18] 胡章立, 刘永定. 盐生杜氏藻细胞对回转器模拟微重力刺激的反应[J]. 科学通报, 1998(16):1750-1754. HU Z L, LIU Y D. Cell responses of Dunaliella salina to microgravitational stimulation by clinorotation[J]. Chinese science bulletin,1998(16):1750-1754. [19] 胡章立,刘永定,涂欢. 回转器模拟微重力刺激对不同品系稻田鱼腥藻代谢特性的影响[J]. 微生物学报,2001, 41(4):489-493. HU Z L, LIU Y D, TU H. Effect of microgravity simulation with clinostat on different strains in Anabeana oryza[J]. Acta microbiologica sinica, 2001, 41(4):489-493.