|本期目录/Table of Contents|

[1]何秋石,吴 锋*,陈 浩,等.热声制冷微循环的特性优化[J].武汉工程大学学报,2016,38(06):577-582.[doi:10. 3969/j. issn. 1674-2869. 2016. 06. 012]
 HE Qiushi,WU Feng*,CHEN Hao,et al.Optimizing Performance of Thermoacoustic Refrigeration[J].Journal of Wuhan Institute of Technology,2016,38(06):577-582.[doi:10. 3969/j. issn. 1674-2869. 2016. 06. 012]
点击复制

热声制冷微循环的特性优化(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年06期
页码:
577-582
栏目:
机电工程
出版日期:
2016-12-15

文章信息/Info

Title:
Optimizing Performance of Thermoacoustic Refrigeration
作者:
何秋石吴 锋*陈 浩田一泽蒋智杰
武汉工程大学机电工程学院,湖北 武汉 430205
Author(s):
HE QiushiWU Feng*CHEN HaoTIAN Yize JIANG Zhijie
School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
热声制冷微循环直线过程有限时间热力学制冷率性能系数
Keywords:
thermoacoustic refrigeration micro-circle straight line process finite time thermodynamics refrigeration rate coefficient of performance
分类号:
TK121
DOI:
10. 3969/j. issn. 1674-2869. 2016. 06. 012
文献标志码:
A
摘要:
建立包含直线过程的热声制冷微循环模型,简要描述了热声微循环过程. 应用有限时间热力学的方法分析此模型的循环最优性能,求出了包含直线过程的热声微循环吸热与放热的临界点、循环的制冷量、制冷率及制冷机的性能系数;并由数值模拟得出热声制冷微循环中,制冷量、制冷率以及制冷机性能系数与直线过程压强比和等压过程体积比之间的特性关系. 结果表明:制冷机的制冷量随着等压过程体积比的增大而增加;等压过程体积比给定的条件下,直线过程压强比越小的制冷机获得的制冷量就越大;适当的压强比或体积比可以有效的提高制冷机的性能系数.
Abstract:
A thermoacoustic refrigeration micro-circle model with the straight line process was established and the process of thermoacoustic micro-circle was described briefly. The optimal performance of micro-circle was analyzed by using the finite time thermodynamics. The critical point of endothermic and exothermic, the refrigeration capacity, the refrigeration rate and refrigerator performance coefficient were calculated. The relationship between the refrigeration capacity, refrigeration rate and performance coefficient of refrigerator with the pressure ratio of straight line process and the volume ratio of isobaric process was obtained by using the numerical simulation. The results show that the cooling capacity increases with the volume ratio rising in isobaric process;the smaller pressure ratio of the refrigerator will obtain more refrigeration capacity at the given volume ratios of isobaric process; appropriate pressure ratio or volume ratio can improve the performance of the refrigeration.

参考文献/References:

[1] 吴锋,李青. 热声理论的研究进展[J]. 武汉工程大学学报, 2012, 34(1): 1-6. WU F,LI Q. Advance in thermoacoustic theory [J]. Journal of Wuhan institute of technology,2012, 34(1): 1-6. [2] 吴锋. 斯特林机的有限时间热力学优化[M]. 北京:化学工业出版社,2008. [3] 龚舒文,陈林根. 包含多变过程的内可逆Lenoir循环性能分析与优化[J]. 节能,2013(7):22-26. GONG S W,CHEN L G. Performance analysis and optimization of a Lenoir cycle with polytrophic process [J]. Energy saving,2013(7):22-26. [4] 熊兵,陈林根. 包含多变过程的内可逆Otto有限时间热力学分析[J]. 电力与能源,2014,35(2):166-171. XIONG B, CHEN L G. Finite-time thermodynamic analysis of an end reversible Otto cycle with polytrophic process[J]. Power and energy,2014,35(2):166-171. [5] 吴文宜. 理想气体直线过程的讨论[J]. 大学物理,1996,15(7):46-47. [6] 张忠厚. 热力学中的多方过程研究[J]. 辽宁工程技术大学学报(自然科学版),2006(25):333-334. ZHANG Z H. Research of polytropic process in thermodynamics [J]. Journal of Liaoning technical university(natural science),2006(25):333-334. [7] SWIFT G W. Thermoacoustic engine [J]. The Jourmal of the acoustical society of America, 1988(84): 1145-1180. [8] 赵忠明,李青. 热声机械的研究现状及展望[J]. 流体机械,2009,37(4):79-82. ZHAO Z M,LI Q. Study status and prospects of the thermoacoustic device [J]. Fluid machinery,2009,37(4):79-82. [9] 张海伟, 刘家林. 热声制冷技术的研究与进展[J]. 制冷,2012,31(3):44-50. ZHANG H W, LIU J L. Research and development of thermo-acoustic refrigeration technology [J]. Refrigeration,2012,31(3):44-50. [10] 颜鹏,刘益才. 热声热机的理论研究及其进展[J]. 真空与低温, 2011,17(3): 130-135. YAN P, LIU Y C. Theoretical research and development of thermoacoustic engines [J]. Vacuum & cryogenics, 2011, 17(3): 130-135. [11] 刘益才,武瞳. 热声热机的研究进展[J]. 真空与低温,2014,20(1):1-8. LIU Y C, WU T . Review of developments in the thermoacoustic engine [J]. Vacuum & cryogenics,2014,20(1):1-8. [12] 郭方中, 李青. 热动力学[M]. 武汉: 华中科技大学出版社, 2007. [13] 阚绪献,吴锋. 热声热机微热力循环的最优性能[J]. 武汉理工大学学报(自然科学版),2009,31(14):130-133. KAN X X,WU F. Performance optimization of a thermoacoustic engine micro-cycle[J]. Journal of Wuhan university of technology,2009,31(14):130-133. [14] 陈浩,吴锋,林杰, 等. 变温热源条件下热声制冷机的火用效率分析[J]. 化学工程与装备,2015, 1(1): 10-13. [15] 林杰,吴锋,费锦华,等.实际热声热机微热力学循环性能优化[J].湖北大学学报(自然科学版),2014,36(3):233-237. LIN J,WU F,FEI J H, et al. Performance optimization of an actual thermoacoustic engine micro-cycle[J]. Journal of Hubei university(natural Science),2014,36(3):233-237.

相似文献/References:

备注/Memo

备注/Memo:
更新日期/Last Update: 2016-12-23