|本期目录/Table of Contents|

[1]张 胜,肖智天,周 鑫,等.高比表面积g-C3N4制备及电催化性质的研究[J].武汉工程大学学报,2017,39(01):25-30.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 005]
 ZHANG Sheng,XIAO Zhitian,ZHOU Xin,et al.Preparation and Electrocatalytic Properties of g-C3N4 with High Specific Surface Area[J].Journal of Wuhan Institute of Technology,2017,39(01):25-30.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 005]
点击复制

高比表面积g-C3N4制备及电催化性质的研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年01期
页码:
25-30
栏目:
材料科学与工程
出版日期:
2017-03-29

文章信息/Info

Title:
Preparation and Electrocatalytic Properties of g-C3N4 with High Specific Surface Area
作者:
张 胜肖智天周 鑫孙艳娟吴生丽刘 忆邹 菁*
武汉工程大学化学与环境工程学院,湖北 武汉 430074
Author(s):
ZHANG Sheng XIAO Zhitian ZHOU Xin SUN Yanjuan WU Shengli LIU Yi ZOU Jing*
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
关键词:
g-C3N4高比表面积溶剂热法壬基酚对硝基苯酚电化学传感
Keywords:
g-C3N4 high specific surface area solvothermal methodnonyl phenol p-nitrophenol electrochemical sensing
分类号:
X703
DOI:
10. 3969/j. issn. 1674?2869. 2017. 01. 005
文献标志码:
A
摘要:
采用溶剂热法成功地合成了高比表面积的类石墨相g-C3N4. 详细地研究了合成时间对产物的形貌、晶相、阻抗、光电流响应及吸附性能的影响. 结果表明,随着合成时间的增加,产物的形貌从多孔块状变成多孔片状最后形成纤维网状,比表面积较体相g-C3N4明显增加,尤其是多孔片状g-C3N4的比表面积最大,达到了102.0 m2?g-1,且光电流响应值最高,阻抗值最小,对壬基酚和对硝基苯酚表现出优异的电催化活性,说明其在电化学传感方面将有良好的应用前景.
Abstract:
Graphite-like carbon nitride (g-C3N4) with high specific surface area was synthesized successfully by solvothermal method. The effects of reaction time on the morphology, crystal phase, electrochemical impedance spectroscopy, photocurrent responses and adsorption properties of the products were discussed in detail. The results show that the porous block, porous sheet and fiber net morphologies were obtained with the reaction time increasing. The specific surface areas of as-prepared g-C3N4 increase obviously comparing with that of the bulk g-C3N4. Particularly, the as-prepared porous sheet g-C3N4 exhibits excellent electrocatalytic activity for the nonylphenol and p-nitrophenol with the maximum photocurrent responses and the minimum resistance charge transfer value at the maximum specific surface area of 102.0 m2 /g, revealing that there is a good application prospects in electrochemical sensing.

参考文献/References:

[1] WANG X C, KAZUHIKO M, ARNE T, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materia, 2009 (8): 76-80. [2] FANG S, LYU K L, LI Q, et al. Effect of acid on the photocatalytic degradation of rhodamine B over g-C3N4. [J]. Applied Surface Science, 2015 (358): 336-342. [3] FANG S, XIA Y, LYU K, et al. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4[J]. Applied Catalysis B: Environmental, 2016 (185): 225-232. [4] ZHANG Y J, MORI T, YE J H, et al. Photocurrent generation by polymeric carbon nitride solids: an initial step towards a novel photovoltaic system[J]. Journal of the American Chemical Society,2010(132): 6294- 6295. [5] LIU G, NIU P, SUN C H, et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4[J]. Journal of the American Chemical Society, 2010 (132): 11642-11648. [6] MENG Y L, SHEN J, CHEN D, et al. Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst[J]. Rare Metals, 2011 (30): 276- 279. [7] LI Y H, LYU K L, HO W K, et al. Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst[J]. Applied Catalysis B: Environmental, 2017 (202): 611-619. [8] GONG W Y, ZOU J, ZHANG S, et al. Nickel oxide and nickel co-doped graphitic carbon nitride nanocomposites and its octylphenol sensing application[J]. Electroanalysis, 2016 (28): 227-234. [9] CHEN X F, ZHANG J S, FU X Z, et al. Fe-g-C3N4-Catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. [J]. Journal of the American Chemical Society, 2009 (131): 11658-11659. [10] LE S K, JIANG T S, LI Y W, et al. Highly efficient visible-light-driven mesoporous graphitic carbon nitride/ZnO nanocomposite photocatalysts[J]. Applied Catalysis B: Environmental, 2017 (200): 601-610. [11] GROENEWOLT M, ANTONIETTI M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices[J]. Advanced Materials, 2005 (17): 1789-1792. [12] TAHIR M, CAO C B, BUTT F K, et al. Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis[J]. Journal of Materials Chemistry A, 2013 (1): 13949. [13] BAI X J, LI J, CAO C B. Synthesis of hollow carbon nitride microspheres by an electrodeposition method. [J]. Applied Surface Ccience,2010(256): 2327- 2331. [14] SUN J H, ZHANG J S, ZHANG M W, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012, 3(4): 1139. [15] LI X H, ZHANG J S, CHEN X F, et al. Condensed Graphitic carbon nitride nanorods by nanoconfinement: promotion of crystallinity on photocatalytic conversion[J]. Chemistry of Materials, 2011 (23): 4344-4348. [16] CUI Y J, DING Z X, FU X Z, et al. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis[J]. Angewandte Chemie International Edition English, 2012 (51): 11814-11818. [17] HAN C C, GE L, CHEN C F, et al. Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange[J]. Applied Catalysis B: Environmental, 2014 (147): 546-553. [18] LOTSCH B V, SCHNICK W. New light on an old story: formation of melam during thermal condensation of melamine[J]. Chemistry-a European Journal, 2007 (13): 4956-4968. [19] JUGENS B, IRRAN E, SENKER J, et al. Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride:? synthesis, structure determination by x-ray powder diffractometry, solid-state nmr, and theoretical studies[J]. Journal of the American Chemical Society, 2003 (125): 10288-10300.

相似文献/References:

[1]覃艳蕾,丁耀彬,张广丽,等.基于前驱体热化学性质调控g-C3N4的合成[J].武汉工程大学学报,2016,38(2):109.[doi:10. 3969/j. issn. 1674-2869. 2016. 02. 002]
 QIN Yanlei,DING Yaobin,ZHANG Guangli,et al.Controlled Synthesis of g-C3N4 Based on Thermo-Chemical Property of Precursor[J].Journal of Wuhan Institute of Technology,2016,38(01):109.[doi:10. 3969/j. issn. 1674-2869. 2016. 02. 002]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2017-02-22