|本期目录/Table of Contents|

[1]袁 惠,栗海峰*,任叶刚.碱式碳酸锆的热分解非等温动力学及机理研究[J].武汉工程大学学报,2017,39(02):134-140.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 006]
 YUAN Hui,LI Haifeng*,REN Yegang.Non-isothermal Kinetics and Mechanism of Thermal Decomposition of Basic Zirconium Carbonate[J].Journal of Wuhan Institute of Technology,2017,39(02):134-140.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 006]
点击复制

碱式碳酸锆的热分解非等温动力学及机理研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年02期
页码:
134-140
栏目:
化学与化学工程
出版日期:
2017-05-04

文章信息/Info

Title:
Non-isothermal Kinetics and Mechanism of Thermal Decomposition of Basic Zirconium Carbonate
作者:
袁 惠1栗海峰2*任叶刚1
1. 宝鸡西北有色七一七总队有限公司测试中心,陕西 宝鸡 721004;2. 中国地质大学(武汉)材料与化学学院,湖北 武汉 430074
Author(s):
YUAN Hui1 LI Haifeng2* REN Yegang1
1. Testing Center of LTD of Northwest Nonferrous 717 Brigade Baoji, Baoji 721004, China;2. Faculty of Materials Science and Chemistry, China University of Geosciences(Wuhan), Wuhan 430074, China
关键词:
碱式碳酸锆热分解非等温动力学机理纳米氧化锆
Keywords:
basic zirconium(Ⅳ) carbonate thermal decomposition non-isothermal kinetics mechanism nanometer zirconia
分类号:
O643.12;O643.11
DOI:
10. 3969/j. issn. 1674?2869. 2017. 01. 006
文献标志码:
A
摘要:
采用综合热分析仪研究了碱式碳酸锆在空气气氛中热分解非等温动力学,热分解升温速率分别为10 ℃/min、20 ℃/min、30 ℃/min,根据固相反应动力学理论及TG-DTG数据,计算其动力学参数. 采用Kissinger-Akah-Sunose方程与Flynn-Wall-Ozawa方程及应用最小二乘法进行线性回归推导了其最可几机理函数. 结果表明,碱式碳酸锆非等温热分解分为四阶段,第Ⅰ阶段表观活化能为94.963 kJ/mol,指前因子为27.407 6~27.864 1,最可机理函数为NO.27,随机成核和随后生长机制;第Ⅱ阶段表观活化能为309.781 kJ/mol,指前因子为57.730 4~58.873 6,最可几机理函数为NO.28,随机成核和随后生长机制;第Ⅲ阶段表观活化能为362.591 kJ/mol,指前因子为53.268 8~55.034 6,最可理机函数为NO.21,化学反应机制. 为以碱式碳酸锆作为原料热分解制备纳米氧化锆粉体及碳酸锆铵、碳酸锆钾等衍生化合物提供了理论依据.
Abstract:
The thermal decomposition and non-isothermal kinetic evaluation of basic zirconium carbonate were studied in air by using simultaneous thermal analyzer, and thekineticsparameterswerecalculated by solid-phase reaction and thermal gravity-differential thermal gravity techniques at thermal decomposition of heating rates of 10 ℃/min, 20 ℃/min and 30 ℃/min. The?most?probable mechanism functions were deduced by Kissinger-Akah-Sunose equation, Flynn-Wall-Ozawa equation and the least square method. The results show that the decomposition process of basic zirconium carbonate is divided into four stages. The value of the activation energy in phase I, II and III is 94.963 kJ/mol, 309.781 kJ/mol and 362.591 kJ/mol, respectively, and the corresponding pre-exponential factor is 27.40-27.864 1, 57.730 4-58.873 6 and 53.268 8-55.034 6. The most probable decomposition mechanism in phase I, II and III obeys the assumed random nucleation, the assumed random nucleation and the chemical reaction mechanism, respectively. The study provides a theoretical basis for the preparation of zirconia, ammonium zirconium carbonate, potassium zirconium carbonate by thermal decomposition using basic zirconium carbonate as raw materials.

参考文献/References:

[1] CHRASKA T, KING A H, BERNDT C C, et al. On the size-dependent phase transformation in nanoparticulate zirconia[J]. Materials Science and Engineering, 2000, 286:169-178. [2] GUO G Y, CHEN Y L. A nearly pure monoclinic nanocrystalline zirconia[J]. Journal of Solid State Chemistry, 2005, 178:1675-1682. [3] DOBSON K D, MCQUILLAN A J. An infrared spectroscopic study of carbonate adsorption to zirconium dioxide sol-gel films from aqueous solutions[J]. Langmuir, 1997, 13:3392-3396. [4] KAYA C, HE J Y, GU X, et al. Nanostructured ceramic powders by hydrothermal synthesis and their applications [J]. Microporous and Mesoporous Materials, 2002, 54(1):37-49. [5] ROOSEN A,HAUSNER H. Influence of ethanol washing of the hydrous precursor on the textural and structural properties of zirconia[J]. Ceramic Powders, 1983,35:773-782. [6] BOURELL D L, KAYSSER W. Sol-Gel synthesis of nanophase yttria-stabilized tetragonal zirconia and densification behavior below 1600 K[J]. Journal of American Ceramic Society, 1993, 76(3):705-711. [7] DUDNIK E V. Modern methods for hydrothermal synthesis of ZrO2-based nanocrystalline powders[J]. Powder Metallurgy and Metal Ceramics, 2009, 48(3/4):238-248. [8] ARIAS A M, GARCIA M F, BALLESTEROS V, et al. Characterization of high surface area Zr-Ce (1∶1) mixed oxide prepared by a microemulsion method[J]. Langmuir, 1999, 15(14):4796-4802. [9] SLIEM M A, SCHMIDT D A, B?TARD A, et al. Surfactant-induced nonhydrolytic synthesis of phase-pure ZrO2 nanoparticles from metal-organic and oxocluster precursors[J]. Chemistry of Materials, 2012, 24(22):4274-4282. [10] LIANG J H, DENG Z X,JIANG X, et al. Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation [J]. Inorganic Chemistry, 2002, 41(14):3602-3604. [11] CAU C,GUARI Y,CHAVE T, et al. Sonohydrothermal synthesis of nanostructured (Ce,Zr)O2 mixed oxides with enhanced catalytic performance [J]. Physical Chemistry, 2013, 117(44):22827-22833. [12] SOYEZ G, EASTMAN J A, THOMPSON L J, et al. Grain-size-dependent thermal conductivity of nanocrystalline yttriastabilized zirconia films grown by metal-organic chemical vapor deposition[J]. Applied Physics Letters, 2000, 77(8):1155-1157. [13] ZHANG C, LI C X, YANG J, et al. Tunable luminescence in monodisperse zirconia spheres[J]. Langmuir Article, 2009, 25(12):7078-7083. [14] GARVIE R C. Stabilization of the tetragonal structure in zirconia microcrystals[J]. The Journal of Physical Chemistry, 1978, 82(2): 218-224. [15] VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. Ictac kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1):1-19. [16] JANKOVIC B, MENTUS S, JELIC D. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere[J]. Physica B: Condensed Matter, 2009, 404(16):2263-2269. [17] GENIEVA S D, VLAEV L T, ATANASSOV A N. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure[J]. Journal of Thermal Analysis and Calorimetry, 2010, 99(2):551-561. [18] LI L Q, DONG H C. Application of iso-temperature method of multiple rate to kinetic analysis dehydration for calcium oxalate monohydrate[J]. Journal of Thermal Analysis and Calorimetry, 2004, 78(1):283-293.

相似文献/References:

[1]张勇,杨虎,郑超,等.氯氧镁水泥热分解过程的研究[J].武汉工程大学学报,2009,(07):81.
 ZHANG Yong,YANG Hu,ZHENG Chao,et al.Study on thermal decomposition of magnesium oxychloride cement[J].Journal of Wuhan Institute of Technology,2009,(02):81.
[2]徐慢*,赵静,王树林,等.热解氧钒碱式碳酸铵法M型二氧化钒粉体的制备[J].武汉工程大学学报,2014,(06):20.[doi:103969/jissn16742869201406005]
 XU Man,ZHAO Jing,WANG Shu lin,et al.Preparation of Mvanadium dioxide powder by thermolysis of ammonium oxovanadium carbonate hydroxide[J].Journal of Wuhan Institute of Technology,2014,(02):20.[doi:103969/jissn16742869201406005]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2017-04-25