|本期目录/Table of Contents|

[1]舒绍明,刘翎玥,刘善堂*.偏锡酸锌空心立方体的合成及其乙醇气敏性能[J].武汉工程大学学报,2017,39(02):141-146.[doi:10. 3969/j. issn. 1674?2869. 2017. 02. 007]
 SHU Shaoming,LIU Lingyue,LIU Shantang*.Fabrication of Zinc Stannate Hollow Cubes and Their Sensing Properties for Ethanol[J].Journal of Wuhan Institute of Technology,2017,39(02):141-146.[doi:10. 3969/j. issn. 1674?2869. 2017. 02. 007]
点击复制

偏锡酸锌空心立方体的合成及其乙醇气敏性能(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年02期
页码:
141-146
栏目:
材料科学与工程
出版日期:
2017-05-04

文章信息/Info

Title:
Fabrication of Zinc Stannate Hollow Cubes and Their Sensing Properties for Ethanol
作者:
舒绍明12刘翎玥12刘善堂12*
1.武汉工程大学化学与环境工程学院,湖北 武汉 430205;2.绿色化工过程教育部重点实验室(武汉工程大学), 湖北 武汉 430205
Author(s):
SHU Shaoming12 LIU Lingyue12 LIU Shantang12*
1. School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China;2. Key Laboratory for Green Chemical Process (Wuhan Institute of Technology), Ministry of Education, Wuhan 430205, China
关键词:
空心立方体偏锡酸锌气敏传感器乙醇
Keywords:
hollow cubes Zinc stannate gas sensor ethanol
分类号:
TQ132.4;R318.08
DOI:
10. 3969/j. issn. 1674?2869. 2017. 02. 007
文献标志码:
A
摘要:
采用简易的一步共沉淀法合成偏锡酸锌空心立方体. 利用扫描电子、透射电子显微镜、X射线衍射、固体紫外、氮气吸附比表面测试等表征手段对该材料形貌和结构进行表征,结果表明,所合成的偏锡酸锌空心立方体边长约为1.4 μm,立方体的壁厚约为210 nm,而且尺寸均匀. 气敏性能测试研究表明,偏锡酸锌空心立方体材料对乙醇表现出优异的气敏性能,其最佳工作温度为175 ℃,并且对体积分数为百万分之一的乙醇气体的响应为1.7. 因此,偏锡酸锌空心立方体材料可以做为一种优良的气敏材料.
Abstract:
Zinc stannate hollow cubes were successfully prepared via a simple one-step co-precipitation method, and the morphology and structure were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV-vis diffuse reflectance spectra and Brunauer-Emmett-Teller. The results indicate that the zinc stannate is a kind of hollow cubic structure with aside length of 1.4 μm, and the wall thickness of the cubes is about 210 nm with uniform size. The tests show that the sensor based on the hollow cubic zinc stannates has excellent gas sensitivity to ethanol, and its response to volume fraction one millionth of ethanol gas is about 1.7 at the optimum working temperature of 175 ℃. Therefore, the hollow cubic zinc stannates can be used as an excellent gas-sensing material.

参考文献/References:

[1] YUASA M, MASALO T, KIDA T, et al. Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor [J]. Sensors and Actuators B: Chemical,2009, 136(1):99-104. [2] BAI S L, ZHANG K W, LUO R X, et al. Low- temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2 [J]. Journal of Materials Chemistry,2012, 22(25):12643. [3] LUBY S, CHITU L, JERGEL M, et al. Oxide nanoparticle arrays for sensors of CO and NO2 gases [J]. Vacuum,2012, 86(6):590-593. [4] WANG C X, YIN L W, ZHANG L Y, et al. Metal oxide gas sensors: sensitivity and influencing factors [J]. Sensors,2010, 10(3):2088-2106. [5] VETTER S, HAFFER S, WAGNER T, et al. Nanostructured Co3O4 as a CO gas sensor: temperature-dependent behavior [J]. Sensors and Actuators B: Chemical,2015, 206:133-138. [6] LIU Y L, KONG C, LIN J H, et al. One-step hydrothermal synthesis of high-performance gas-sensing crystals CdIn2O4 with octahedral shape [J]. Crystal Growth & Design,2012, 12(8):4104-4108. [7] LAMPE U, GERBLINGER J, MEIXNER H, et al. Nitrogen oxide sensors based on thin films of BaSnO3 [J]. Sensors & Actuators B: Chemical, 1995, 26(13):97-98. [8] GENG B Y, FANG C H, YU N, et al. Synthesis of polyhedral ZnSnO3 microcrystals with controlled exposed facets and their selective gas-sensing properties [J]. Small, 2008, 4(9):1337-1343. [9] WU X H, WANG Y D, ZHOU Z L, et al. Electrical and gas-sensing properties of perovskite-type CdSnO3 semiconductor material [J]. Materials Chemistry & Physics,2001, 45(5):639-644. [10] ZHU C L, CHEN Y J, SHI X L, et al. Synthesis and enhanced ethanol sensing properties of [α]-Fe2O3/ZnO heteronanostructures [J]. Sensors & Actuators B: Chemical,2009, 140(1):185-189. [11] 宋文龙, 郑聚成, 陈高峰, 等. 氧化钛锡复合纳米粉的制备及其气敏性[J]. 武汉工程大学学报, 2011,33(7):81-86. SONG W L, ZHENG J C, CHEN G F, et al.Preparation and gassensing characterization of TiO2 and SnO2 composite nanoparticles [J]. Journal of Wuhan Institute of Technology, 2011, 33(7):81-86. [12] LEE J H. Gas sensors using hierarchical and hollow oxide nanostructures: overview [J]. Sensors Actuators B: Chemical,2009, 140(1):319-336. [13] DUAN J F, HOU S C, DUAN H G, et al. Synthesis of amorphous ZnSnO3 hollow nanoboxes and their lithium storage properties [J]. Materials Letters,2014, 122:261-264. [14] CHEN Y J, YU L, WANG T H, et al. An evolution from 3D face-centered-cubic ZnSnO3 nanocubes to 2D orthorhombic ZnSnO3 nanosheets with excellent gas sensing performance [J]. Nanotechnology,2012, 23(41):415501. [15] PROVENZANO P L, JINDAL G R, SWEET J R, et al. Flame-excited luminescence in the oxides Ta2O5, Nb2O5, TiO2, ZnO, and SnO2 [J]. Journal of Luminescence,2001, 92(4):297-305. [16] WANG C, WANG X M, XU B Q, et al. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation [J]. Journal of Photochemistry and Photobiolog A Chemistry,2004, 168(1):47-52. [17] WANG Z J, LIU J, YU X B, et al. Size-controlled synthesis of ZnSnO3 cubic crystallites at low temperatures and their HCHO-sensing properties [J]. Journal of Clinical Radilogy,1995, 29(11):1420- 1426. [18] KRUK M,JARONIEC M.Gas adsorption characterization of ordered organic-inorganic nanocomposite materials [J]. Chem Mater, 2001, 13(10):3169-3183. [19] 林志东, 宋文龙, 王珂,等. 聚乙二醇修饰纳米二氧化锡的制备及气敏特性[J]. 武汉工程大学学报,2013,35(3): 52-56. LIN Z D, SONG W L, WANG K, et al. Preparation and gas sensing characteristic of polyethylene glycol glycol modified nano SnO2 [J]. Journal of Wuhan Institute of Technology, 2013, 35(3): 52-56 [20] XIAO L, SHU S M, LIU S T, et al. A facile synthesis of Pd-doped SnO2 hollow microcubes with enhanced sensing performance [J]. Sensors Actuators B: Chemical, 2015, 221:120-126.

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2017-04-25