[1] YUASA M, MASALO T, KIDA T, et al. Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor [J]. Sensors and Actuators B: Chemical,2009, 136(1):99-104. [2] BAI S L, ZHANG K W, LUO R X, et al. Low- temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2 [J]. Journal of Materials Chemistry,2012, 22(25):12643. [3] LUBY S, CHITU L, JERGEL M, et al. Oxide nanoparticle arrays for sensors of CO and NO2 gases [J]. Vacuum,2012, 86(6):590-593. [4] WANG C X, YIN L W, ZHANG L Y, et al. Metal oxide gas sensors: sensitivity and influencing factors [J]. Sensors,2010, 10(3):2088-2106. [5] VETTER S, HAFFER S, WAGNER T, et al. Nanostructured Co3O4 as a CO gas sensor: temperature-dependent behavior [J]. Sensors and Actuators B: Chemical,2015, 206:133-138. [6] LIU Y L, KONG C, LIN J H, et al. One-step hydrothermal synthesis of high-performance gas-sensing crystals CdIn2O4 with octahedral shape [J]. Crystal Growth & Design,2012, 12(8):4104-4108. [7] LAMPE U, GERBLINGER J, MEIXNER H, et al. Nitrogen oxide sensors based on thin films of BaSnO3 [J]. Sensors & Actuators B: Chemical, 1995, 26(13):97-98. [8] GENG B Y, FANG C H, YU N, et al. Synthesis of polyhedral ZnSnO3 microcrystals with controlled exposed facets and their selective gas-sensing properties [J]. Small, 2008, 4(9):1337-1343. [9] WU X H, WANG Y D, ZHOU Z L, et al. Electrical and gas-sensing properties of perovskite-type CdSnO3 semiconductor material [J]. Materials Chemistry & Physics,2001, 45(5):639-644. [10] ZHU C L, CHEN Y J, SHI X L, et al. Synthesis and enhanced ethanol sensing properties of [α]-Fe2O3/ZnO heteronanostructures [J]. Sensors & Actuators B: Chemical,2009, 140(1):185-189. [11] 宋文龙, 郑聚成, 陈高峰, 等. 氧化钛锡复合纳米粉的制备及其气敏性[J]. 武汉工程大学学报, 2011,33(7):81-86. SONG W L, ZHENG J C, CHEN G F, et al.Preparation and gassensing characterization of TiO2 and SnO2 composite nanoparticles [J]. Journal of Wuhan Institute of Technology, 2011, 33(7):81-86. [12] LEE J H. Gas sensors using hierarchical and hollow oxide nanostructures: overview [J]. Sensors Actuators B: Chemical,2009, 140(1):319-336. [13] DUAN J F, HOU S C, DUAN H G, et al. Synthesis of amorphous ZnSnO3 hollow nanoboxes and their lithium storage properties [J]. Materials Letters,2014, 122:261-264. [14] CHEN Y J, YU L, WANG T H, et al. An evolution from 3D face-centered-cubic ZnSnO3 nanocubes to 2D orthorhombic ZnSnO3 nanosheets with excellent gas sensing performance [J]. Nanotechnology,2012, 23(41):415501. [15] PROVENZANO P L, JINDAL G R, SWEET J R, et al. Flame-excited luminescence in the oxides Ta2O5, Nb2O5, TiO2, ZnO, and SnO2 [J]. Journal of Luminescence,2001, 92(4):297-305. [16] WANG C, WANG X M, XU B Q, et al. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation [J]. Journal of Photochemistry and Photobiolog A Chemistry,2004, 168(1):47-52. [17] WANG Z J, LIU J, YU X B, et al. Size-controlled synthesis of ZnSnO3 cubic crystallites at low temperatures and their HCHO-sensing properties [J]. Journal of Clinical Radilogy,1995, 29(11):1420- 1426. [18] KRUK M,JARONIEC M.Gas adsorption characterization of ordered organic-inorganic nanocomposite materials [J]. Chem Mater, 2001, 13(10):3169-3183. [19] 林志东, 宋文龙, 王珂,等. 聚乙二醇修饰纳米二氧化锡的制备及气敏特性[J]. 武汉工程大学学报,2013,35(3): 52-56. LIN Z D, SONG W L, WANG K, et al. Preparation and gas sensing characteristic of polyethylene glycol glycol modified nano SnO2 [J]. Journal of Wuhan Institute of Technology, 2013, 35(3): 52-56 [20] XIAO L, SHU S M, LIU S T, et al. A facile synthesis of Pd-doped SnO2 hollow microcubes with enhanced sensing performance [J]. Sensors Actuators B: Chemical, 2015, 221:120-126.