[1] CHAI B,PENG T Y,MAO J,et al. Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation[J]. Physical Chemistry Chemical Physics,2012,14(48):16745-16752. [2] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Hemical Society Reviews,2009,38(1):253-278. [3] LIU A Y,COHEN M L. Prediction of new low compressibility solid[J]. Science,1989,245(4920):841-842. [4] TETER D M, HEMLEY R J.Low-compressibility- carbon nitride[J]. Science,1996,271(5245):53-55. [5] JI H,CHANG F,HU X,et al. Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation[J]. Chemical Engineering Journal,2013,218(4):183-190. [6] WANG Y,WANG X C,ANTONIETTI M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry antonietti[J]. Angewandte Chemie International Edition,2012,51(1):68-89. [7] NIU C M,LU Y Z,LIEBER C M. Experimental realization of the covalent solid carbon nitride[J]. Science,1993,261(5119):334-337. [8] NESTING D C,BADDING J V. Hing-pressure synthesis of sp2-bonded carbon nitrides[J]. Chemical of Materials,1996,8(7): 1535-1539. [9] LI C,YANG X G,YANG B,et al. Synthesis and characterization of nitrogen-rich graphitic carbon nitride[J]. Chemical and Physics,2007,103(2/3):427-432. [10] 李超,曹传宝,朱鹤孙. 电化学沉积法制备类石墨相氮化碳[J]. 材料通报,2003,48(9):905-908. LI C,CAO C B,ZHU H S. Preparation of graphite phase carbonitride by electrochemical deposition [J]. Material Notification,2003,48(9):905-908. [11] JUN Y S,HONG W H,ANTONIETTI M,et al. Mesoporous,2D hexagonal carbon nitrid and titanium nitride/carbon composites [J]. Advanced Materials,2009,21(42):4270-4274. [12] LU L Q,ZHU Y C,SHI C,et al. Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation[J]. Carbon,2016,?109:373-383. [13] GAO H Y,XUE C,HU G X,et al. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2 /H2O medium[J]. Ultrasonics Sonochemistry,?2017,?37:120-127. [14] ZHANG X R,MENG Z S,RAO D W,et al. Efficient band structure tuning,charge separation,and visible-light response in ZrS2-Based vander waals heterostructures[J]. Energy & Environmental Science,2016,9(3): 841-849. [15] BERGIN S D,SUN Z Y,RICKARD D,et al. Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures[J]. ACS Nano,2009,3(8):2340-2350. [16] COLEMAN J N,LOTYA M,O’NEILL,et al. Two-dimensional nanosheetsproduced by liquid exfoliation of layered materials[J]. Science,2011,311(6017):568-571. [17] ZHAO H X,YU H T, QUAN X, et al. Atomic single layer graphitic-C3N4: fabrication and its high photocatalytic performance under visible light irradiation[J]. RSC Advances,2014,4(2):624-628. [18] YANG S B,GONG Y J,ZHANG J S,et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Advanced Matericals,2013,25(17):2452-2456. [19] SHE X J,XU H,XU Y G,et al. Exfoliated graphene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+[J]. Journal of Materials Chemistry A,2014,2(8):2563-2570. [20] ZHAO H X,YU H T,QUAN X,et al. Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation[J]. Applied Catalysis B:Environmental,2014,152/153:46-50. [21] LIN Q Y,LI L,LIANG S J,et al. Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities[J]. Applied Catalysis B:Environmental,2015,163:135-142. [22] ZHANG X D,XIE X,WANG H,et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging[J]. Journal of the American Chemical Society,2013,135:18-21. [23] SCHWINGHAMMER K, MESCH B M, DUPPEL V,et al. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution[J]. Journal of the American Chemical Society,2014,136(5):1730-1733. [24] GU Q, GAO Z W,ZHAO H A,et al. Temperature-controlled morphology evolution of graphitic carbon nitride nanostructures and their photocatalytic activities under visible light[J]. RSC Advances,2015,5 (61):49317-49325. [25] NIU P, ZHANG L L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials,2012,22(22):4763-4770. [26] NIU P,YIN L C,YANG Y Q,et al. Increasing the visible light absorption of graphitic carbon nitride(melon) photocatalysts by homogeneous self- modification with nitrogen vacancies[J]. Advanced Matericals,2014,26(47):8046-8052. [27] TAY Q L,KANHERE P,NG C F,et al. Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production[J]. Chemical Matericals,2015,27(14):4930-4933. [28] QIU P X,CHEN H,XU C M,et al. Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst[J]. Journal of Materials Chemistry A,2015,3(48):24237-24244. [29] WU C Z,LU X L,XU K,et al. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity[J]. Materials Chemistry A,2014,2(44):18924-18928. [30] XU H,YAN J,SHE X J,et al. Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu2+[J].Nanoscale,2014,6(3):1406-1415. [31] LIANG Q H,LI Z,HUANG Z H,et al. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production[J]. Advanced Functional Materials,2015,25(44):6885-6892. [32] SANO T,TSUTSUI S,KOIKE K,et al. Activation of graphitic carbon nitride(g-C3N4)by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase[J]. Materials Chemistry A,2013,1(21):6489-6496. [33] ZHANG X D,WANG H X,WANG H,et al. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus[J]. Advanced Materials,2014,26(26):4438-4443. [34] XU Y G,XIE M,HUANG S Q,et al. High yield synthesis of nano-size g-C3N4 derivatives by a dissolve-regrowth method with enhanced photocatalytic ability[J]. RSC Advances,2015,5(33):26281- 26290. [35] CHEN L C,HUANG D J,REN S Y,et al. Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity[J]. Nanoscale,2013,5(1):225-230. [36] CHENG F X,WANG H N,DONG X P. The amphoteric properties of g-C3N4 nanosheets and fabrication of their relevant heterostructure photocatalysts by an electrostatic re-assembly route[J]. Chemical Communications,2015,51(33):7176-7179.
[1]覃 鑫,桂子欣,江梦云,等.煅烧温度对类石墨相氮化碳的结构和电化学性能的影响[J].武汉工程大学学报,2022,44(05):528.[doi:10.19843/j.cnki.CN42-1779/TQ.202107015]
QIN Xin,GUI Zixin,JIANG Mengyun,et al.Effect of Calcination Temperature on Structure and Electrochemical?Properties of Graphite Carbon Nitride[J].Journal of Wuhan Institute of Technology,2022,44(03):528.[doi:10.19843/j.cnki.CN42-1779/TQ.202107015]