|本期目录/Table of Contents|

[1]祁 超,李元松*,杨 恒,等.大跨径钢箱梁斜拉桥合理成桥索力的优化[J].武汉工程大学学报,2017,39(05):477-481.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 013]
 QI Chao,LI Yuansong*,YANG Heng,et al.Optimization of Bridge-Completing Cable Force in Cable-Stayed Bridge with Long-Span Steel Box Girder[J].Journal of Wuhan Institute of Technology,2017,39(05):477-481.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 013]
点击复制

大跨径钢箱梁斜拉桥合理成桥索力的优化(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年05期
页码:
477-481
栏目:
资源与土木工程
出版日期:
2017-12-19

文章信息/Info

Title:
Optimization of Bridge-Completing Cable Force in Cable-Stayed Bridge with Long-Span Steel Box Girder
文章编号:
20170513
作者:
祁 超李元松*杨 恒周小龙
武汉工程大学资源与土木工程学院,湖北 武汉 430074
Author(s):
QI Chao LI Yuansong* YANG Heng ZHOU Xiaolong
School of Resource and Civil Engineering,Wuhan Institute of Technology,Wuhan 430074, China
关键词:
斜拉桥索力优化未知荷载系数影响矩阵
Keywords:
cable-stayed bridge cable force optimization unknown load factor influence matrix
分类号:
U448. 27
DOI:
10. 3969/j. issn. 1674?2869. 2017. 05. 013
文献标志码:
A
摘要:
依据影响矩阵调值原理,提出以结构整体弯矩最小为目标,关键节点的位移为约束条件的斜拉桥索力优化方法. 首先应用Midas/Civil 中“未知荷载系数”功能计算满足特定约束条件的最佳荷载系数, 并求出拉索初拉力. 然后将系数矩阵与弯矩信息导入Excel中,定义目标函数与约束条件,求出初步优化索力,最后将所得初步索力重新代入Midas/Civil模型中,进行局部微调得最终优化索力. 将此方法用于某斜拉桥方案分析,结果表明,优化前后,主梁弯矩减小36%,主塔弯矩减小70%,主梁竖向最大位移减小51%,主塔水平最大位移减小74%,且索力分布均匀,线形更为平顺.
Abstract:
:To optimize the cable forces in the cable-stayed bridges,we adopted the key nodal displacement as constraint conditions to minimize the bending moment of overall structure. Firstly,the optimized load factor and the initial force of the cable were calculated in Midas/Civil model. Secondly,the coefficient matrix and bending moment data were imported into Excel to define a target function and constraint conditions for the initial cable force. Finally,the optimized cable force was obtained by locally adjusting the initial cable force in Midas/Civil model. The results from analyzing a case of cable-stayed bridge show that the bending moment and maximum vertical displacement of the girder,bending moment and maximum horizontal displacement of the main tower decrease by 36%,51%,70% and 74% respectively. The cable force evenly distributes,and the alignment of cable-stayed bridge becomes smoother after optimization.

参考文献/References:

[1] 陈明宪. 斜拉桥建造技术[M]. 北京:人民交通出版社,2003. [2] 苗永慧. 基于影响矩阵法的斜拉桥合理成桥状态研究[D]. 武汉:武汉理工大学,2012. [3] KIM K S,LEE H S. Analysis of target configurations under dead loads for cable-supported bridges[J]. Computers & Structures,2001,79(29/30):2681-2692. [4] KIM J H,CHANG S P. Dynamic stiffness matrix of an inclined cable[J]. Engineering Structures,2001,23(12) :1614-1621. [5] WANG P H,TSENG T C,YANG C G. Initial shape of cable-stayed bridges[J]. Computers & Structures,1993,46(6) :1095-l106. [6] 贾丽君,肖汝诚,孙斌,等. 确定斜拉桥施工张拉力的影响矩阵法[J]. 苏州城建环保学院学报,2000,13(4):21-27. JIA L J,XIAO R C, SUN B,et al. Influence matrix method determining construction cable tensions for cable-stayed bridges[J]. Journal of Suzhou Institute of Urban Construction and Environmental Protection,2000,13(4):21-27. [7] 吴霄,肖汝诚. 基于遗传算法的大跨度混合梁斜拉桥索力优化[J]. 江苏大学学报(自然科学版),2014,35(6):722-726. WU X,XIAO R C. Optimization of cable force for cable-stayed bridges with mixed stiffening girders based on genetic algorithm [J]. Journal of Jiangsu University(Natural Science Edition),2014,35(6):722-726. [8] 余海辉. 龙湾大桥成桥索力优化与合理施工状态研究[D]. 广州:华南理工大学,2014. [9] 于永生,胡展飞. 基于未知荷载系数法的斜拉桥索力计算与优化[J]. 山东交通科技,2016(4):83-86. YU Y S,HU Z F. Computational analysis and optimization for cable force of cable-stayed bridges with unknown load coefficient method[J]. Shandong Jiaotong Keji,2016(4):83-86. [10] 邬中荣. 斜拉桥合理成桥状态确定及施工控制仿真分析[D]. 重庆:重庆大学,2014. [11] 肖汝诚. 确定大跨径桥梁合理设计状态理论与方法研究[D]. 上海:同济大学,1996. [12] 范立础,杜国华,马健中. 斜拉桥索力优化及非线性理想倒退分析[J]. 重庆交通学院学报,1992,11(1):1-12. FAN L C,DU G H,MA J Z. Optimum cable tensions for cable-stayed bridges and idealize nonlinear back-running analysis [J]. Journal of Chongqing Jiaotong University,1992,11(1):1-12. [13] 肖汝诚, 项海帆. 斜拉桥索力优化的影响矩阵法[J]. 同济大学学报(自然科学版),1998,26 (3):235-240. XIAO R C,XIANG H F. Influence matrix method of cable tension optimization for cable-stayed bridge[J]. Journal of Tongji University(Natural Science),1998,26(3):235-240. [14] 梁鹏,肖汝诚,张雪松. 斜拉桥索力优化实用方法[J] . 同济大学学报(自然科学版),2003,31(11):1270-1274. LIANG P,XIAO R C,ZHANG X S. Practical method of optimization of cable tensions for cable-stayed bridges[J]. Journal of Tongji University (Natural Science),2003,31(11):1270-1274. [15] 谢小辉. 多塔斜拉桥成桥索力优化及合理施工状态的确定[D] . 成都:西南交通大学,2013.

相似文献/References:

[1]李元松,李新平,姜天华.板桁结合梁斜拉桥3DANSYS建模技术研究[J].武汉工程大学学报,2008,(04):65.
 LI Yuan song,LI Xin ping,JIANG Tian hua.Study on 3DANSYS modeling technique for large span cablestayed bridge with a platetruss composite beam[J].Journal of Wuhan Institute of Technology,2008,(05):65.

备注/Memo

备注/Memo:
收稿日期:2017-01-16 基金项目:武汉工程大学研究生创新基金(CX2016037)作者简介:祁 超,硕士研究生. E-mail:971620940@qq. com
更新日期/Last Update: 2017-10-25