[1] 王桂茹. 催化剂与催化作用 [M]. 大连: 大连理工大学出版社, 2015. [2] LEE D W, YOO B R. Advanced metal oxide (supported) catalysts: synthesis and applications [J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 3947-3959. [3] LUO M, MA J, LU J, et al. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation [J]. Journal of Catalysis, 2007, 246(1): 52-59. [4] ZHEN M, ZHOU B, REN Y. Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis [J]. Frontiers of Environmental Science & Engineering, 2012, 7(3): 341-355. [5] MA J, WANG C, HE H. Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition[J]. Applied Catalysis B: Environmental, 2017, 201: 503-510. [6] ELSAFTY S A, KHAIRY M, ISMAEL M, et al. Multidirectional porous NiO nanoplatelet-like mosaics as catalysts for green chemical transformations [J]. Applied Catalysis B-Environmental, 2012,123/124(14): 162-173. [7] LI Y F, LIU Z P. Structure and water oxidation activity of 3dmetal oxides[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6(1): 47-64. [8] YUE Y X, FENG Q, WANG Y. Defect formation energy and electronic properties of anatase TiO2 doped with C, N, F [J]. Journal of Functional Materials, 2013, 44(13): 1879-1883. [9] BADAWY M I, MAHMOUD F A, ABDEL-KHALEK A A, et al. Solar photocatalytic activity of sol-gel prepared Ag-doped ZnO thin films [J]. Desalination and Water Treatment, 2013, 52(13/14/15): 2601-2608. [10] ZHAO Y, WANG W, LI Y, et al. Hierarchical branched Cu2O nanowires with enhanced photocatalytic activity and stability for H2 production [J]. Nanoscale, 2014, 6(1): 195-198. [11] 李妍慧,银凤翔,何小波,等. 锂/空气电池非贵金属催化剂研究进展 [J]. 化工进展, 2015, 34(11): 3926-3932. [12] DEBART A, PATERSON A J, BAO J, et al. α-MnO2 nanowires: a catalyst for the o2 electrode in rechargeable lithium batteries [J]. Angewandte Chemie, 2008, 47(24): 4521-4524. [13] KIM K S, PARK Y J. Catalytic properties of Co3O4 nanoparticles for rechargeable Li/air batteries [J]. Nanoscale Research Letters, 2012, 7(1): 47. [14] ZHANG X F, WANG K X, WEI X, et al. Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries [J]. Chemistry of Materials, 2011, 23(24): 5290-5292. [15] LI L, FENG X, NIE Y, et al. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2 [J]. ACS Catalysis, 2015, 5(8): 4825-4832. [16] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review,1964,136(3B): B864-B871. [17] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4): 1133-1142. [18] 陈志达. 量子化学的第二次革命——1998年诺贝尔化学奖简介 [J]. 大学化学, 1999, 14(3): 5-8. [19] 贺伟. 纳米及表面体系分子吸附的理论研究 [D]. 合肥: 中国科学技术大学, 2008. [20] YLVISAKER E R. DFT and DMFT: implementations and applications to the study of correlated materials [M]. Dissertations & Theses-Gradworks, 2008.[21] HIMMETOGLU B, FLORIS A, DE GIRONCOLI S, et al. Hubbard-corrected DFT energy functionals: the LDA+U description of correlated systems [J]. International Journal of Quantum Chemistry, 2014, 114(1): 14-49. [22] ANISIMOV V I, ZAANEN J, ANDERSEN O K. Band theory and Mott insulators: hubbard uinstead of stoner I [J]. Physical Review B, 1991, 44(3): 943-954. [23] ANISIMOV V I,ARYASETIAWAN F,LICHTENSTEIN A I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method [J]. Journal of Physics: Condensed Matter, 1997, 9(4): 767-808. [24] WANG L, MAXISCH T, CEDER G. Oxidation energies of transition metal oxides within the GGA+U framework [J]. Physical Review B, 2006, 73(19): 195017-195112. [25] FORTI M, ALONSO P, GARGANO P, et al. Transition metals monoxides. an LDA+U study [J]. Procedia Materials Science,2012(1): 230-234. [26] MORGAN B J, WATSON G W. Intrinsic n-type defect formation in TiO2: a comparison of rutile and anatase from GGA+U calculations [J]. Journal of Physical Chemistry C, 2010, 114(5): 2321-2328. [27] GAO H, LI X, LV J, et al. Interfacial charge transfer and enhanced photocatalytic mechanisms for the hybrid graphene/anatase TiO2(001) nanocomposites [J]. The Journal of Physical Chemistry C, 2013, 117(31): 16022-16027. [28] 许镇潮,侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响 [J]. 物理学报, 2015, 64(15): 434-442. [29] DENG Z Y, ZHANG J M, XU K W. The electronic and magnetic properties of the F-doped CrO2 from first-principles study [J]. Journal of Magnetism and Magnetic Materials, 2015, 379: 196-201. [30] NODA Y, OHNO K, NAKAMURA S. Momentum- dependent band spin splitting in semiconducting MnO2: a density functional calculation [J]. Physical Chemisstry Chemical Physics, 2016, 18(19): 13294- 13303. [31] NEUFELD O, TOROKER M C. Platinum-doped α-Fe2O3 for enhanced water splitting efficiency: a DFT+U study [J]. The Journal of Physical Chemistry C, 2015, 119(11): 5836-5847. [32] MISHRA A K, ROLDAN A, DE LEEUW N H. CuO surfaces and CO2 activation: a dispersion-corrected DFT+U study [J]. The Journal of Physical Chemistry C, 2016, 120(4): 2198-2214. [33] HU W, LAN J, GUO Y, et al. Origin of efficient catalytic combustion of methane over Co3O4(110): active low-coordination lattice oxygen and cooperation of multiple active sites [J]. ACS Catalysis, 2016, 6(8): 5508-5519. [34] ZHANG Y C, PAN L, LU J, et al. Unraveling the facet-dependent and oxygen vacancy role for ethylene hydrogenation on Co3O4 (110) surface: a DFT+U study [J]. Applied Surface Science, 2017, 401(2017): 241-247. [35] TOMPSETT D A, PARKER S C, ISLAM M S. Rutile (beta-)MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance [J]. Journal of the American Chemical Society, 2014, 136(4): 1418-1426. [36] SONG Y Y, WANG G C. A DFT study and microkinetic simulation of propylene partial oxidation on CuO (111) and CuO (100) surfaces [J]. The Journal of Physical Chemistry C, 2016, 120(48): 27430-27442. [37] WANAGURU P, AN J, ZHANG Q. DFT+U study of ultrathin α-Fe2O3 nanoribbons from (110) and (104) surfaces [J]. Journal of Applied Physics, 2016, 119(8): 084302. [38] BENDAVID L I, CARTER E A. CO2 adsorption on Cu2O(111): a DFT+U and DFT-D study [J]. The Journal of Physical Chemistry C, 2013, 117(49): 26048-26059. [39] MELLAN T A, MAENETJA K P, NGOEPE P E, et al. Lithium and oxygen adsorption at the β-MnO2 (110) surface [J]. Journal of Materials Chemistry A, 2013, 47(1): 14879. [40] CHEN Z, LI G, ZHENG H, et al. Mechanism of surface effect and selective catalytic performance of MnO2 nanorod: DFT+U study [J]. Applied Surface Science, 2017, 420: 205-213. [41] 刘华忠,马为川. O2分子在F掺杂锐钛矿型TiO2(001)面上吸附影响的研究 [J]. 功能材料, 2016, 47(11): 11110-11114. [42] LEI Y H, CHEN Z X. DFT+U study of properties of MoO3 and hydrogen adsorption on MoO3(010) [J]. The Journal of Physical Chemistry C, 2012, 116(49): 25757-25764.