|本期目录/Table of Contents|

[1]袁 密,高 峰,竺昌海,等.磷掺杂碳化硅的制备及其影响因素[J].武汉工程大学学报,2018,40(05):538-542.[doi:10. 3969/j. issn. 1674-2869. 2018. 05. 012]
 YUAN Mi,GAO Feng,ZHU Changhai,et al.Preparation of Phosphorus Doped-Silicon Carbide and Influence Factors[J].Journal of Wuhan Institute of Technology,2018,40(05):538-542.[doi:10. 3969/j. issn. 1674-2869. 2018. 05. 012]
点击复制

磷掺杂碳化硅的制备及其影响因素(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
40
期数:
2018年05期
页码:
538-542
栏目:
材料科学与工程
出版日期:
2018-12-27

文章信息/Info

Title:
Preparation of Phosphorus Doped-Silicon Carbide and Influence Factors
文章编号:
20180512
作者:
袁 密1高 峰1竺昌海1郑雨佳1李梓烨1薛 俊*12曹 宏12
1. 武汉工程大学材料科学与工程学院,湖北 武汉 430205;2. 湖北省环境材料与膜技术工程技术研究中心,湖北 武汉 430074
Author(s):
YUAN Mi1 GAO Feng1 ZHU Changhai1 ZHENG Yujia1 LI Ziye1 XUE Jun*12 CAO Hong12
1. School of Materials Science and Engineering,Wuhan Institute of Technology, Wuhan 430205,China;2. Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province,Wuhan 430074, China
关键词:
碳化硅磷掺杂碳热还原法禁带宽度比表面积影响因素
Keywords:
silicon carbidephosphorus dopedcarbo thermal reduction methodband gapspecific surface areainfluence factors
分类号:
O613.7
DOI:
10. 3969/j. issn. 1674-2869. 2018. 05. 012
文献标志码:
A
摘要:
以葡萄糖粉剂为碳源,沉淀白炭黑为硅源,磷酸为掺杂源,通过碳热还原法制备了磷掺杂碳化硅(SiC)。并利用X射线衍射仪、紫外可见吸收光谱仪、扫描电子显微镜、比表面积测试仪等对不同合成温度、不同掺杂浓度下所制备样品物相组成、微观形貌以及性质进行了表征。结果表明,磷原子进入SiC晶格,形成了磷掺杂3C-SiC。所制备的SiC样品与白炭黑的微观结构相似,其一次粒子平均粒径约150 nm,最高比表面积84.4 m2/g。当n(P)∶n(Si)≥0.01时,掺杂达到饱和。随着温度升高,SiC禁带宽度降低,1 350 ℃后变化微弱,1 400 ℃时,比表面积最大。合成磷掺杂SiC的原料廉价易得,工艺简单,有望实现工业化生产。
Abstract:
Phosphorus doped silicon carbide (SiC) was synthesized using glucose powder as carbon source,carbon-white as silicon source and phosphoric acid as the doping source via carbo thermal reduction method. The phase composition,micromorphology and properties of the samples were characterized by X-ray diffraction,Ultraviolet visible absorption detector,scanning electron microscopy and surface area analyzer. The results showed that phosphorus atoms incorporated into the SiC lattice sites,forming phosphorus doped 3C-SiC. The microstructure of synthesized SiC samples was similar to that of carbon-white, and the mean particle size of primary particle of SiC was 150 nm. The maximal specific surface area of the SiC was 84.4 m2/g. The doping reached a saturation point when n(P)∶n(Si)≥0.01. The band gap of SiC decreased with the increase of the temperature,however,it changed slightly at temperatures above 1 350 ℃,and the specific surface area was the biggest at 1 400 ℃. It is expected to accomplish the large-scale production of doped silicon carbide with cheap and available raw materials used in the present study.

参考文献/References:

[1] 安子博,汪晗,竺昌海,等. 硅碳直接反应法制备超细β-SiC粉[J]. 武汉工程大学学报,2016,38(6):560-564.[2] 朱新文,江东亮,谭寿洪. 碳化硅网眼多孔陶瓷的微波吸收特性[J]. 无机材料学报,2002,17(6):1152-1156.[3] HILBIG A,M?LLER E,WENZEL R,et al. The microstructure of polymer-derived amorphous silicon carbide layers[J]. Journal of the European Ceramic Society,2005,25(2):151-156.[4] ZUUK A V,HEERKENS C T H,VEEN A H V V,et al. Fabrication and characterization of silicon carbide field-emitter array[J]. Microelectronic Engineering,2004,73/74(1):106-110.[5] 廖欣. 碳化硅纳米线柔性复合薄膜的制备及光电催化分解水性能研究[D].杭州:浙江理工大学,2016.[6] 董莉莉,童希立,王英勇,等. 硼掺杂碳化硅负载Pt催化剂的甲醇电催化氧化性能[J]. 燃料化学学报,2014,42(7):845-850.[7] DONG L L,WANG Y Y,TONG X L,et al. Synthesis and characterization of boron-doped SiC for visible light driven hydrogen production[J]. Acta Physico-Chimica Sinica,2014,30(1):135-140.[8] 吕东风,康剑,魏恒勇,等. 非水解溶胶-凝胶法结合碳热还原法制备β-SiC粉体[J]. 耐火材料,2017,51(6):438-441.[9] KELLER N,REIFF O,KELLER V,et al. High surface area submicrometer-sized β-SiC particles grown by shape memory synthesis method[J]. Diamond & Related Materials,2005,14(8):1353-1360.[10] 苏晓磊,罗发,李智敏,等. 化学气相沉积铝掺杂碳化硅的微波介电特性[J]. 功能材料,2007,38(11):1831-1833.[11] GUPTA A,GHOSH T,JACOB C. The influence of diluent gas composition and temperature on SiC nanopowder formation by CVD[J]. Journal of Materials Science,2007,42(13):5142-5146.[12] 江西科技师范大学.利用多晶硅、单晶硅切割废料制备氮化硅/碳化硅的方法:CN103979539A[P]. 2014-08-13.[13] YERMEKOVA Z,MANSUROV Z,MUKASYAN A. Influence of precursor morphology on the microstructure of silicon carbide nanopowder produced by combustion syntheses[J]. Ceramics International,2010,36(8):2297-2305.[14] 刘盼星. 锂离子二次电池负极材料的制备与性能研究[D]. 南京:南京大学,2015.[15] 袁振侠,陆有军,吴澜尔,等. 硅粉与碳黑微波合成碳化硅微粉[J]. 现代技术陶瓷,2016,37(3):190-197.[16] JIN G Q,GUO X Y. Synthesis and characterization of mesoporous silicon carbide[J]. Microporous & Mesoporous Materials,2003,60(1/2/3):207-212.[17] JIN G Q,PING L,GUO X Y. Novel method for synthesis of silicon carbide nanowires[J]. Journal of Materials Science Letters,2003,22(10):767-770.[18] AN-HUI L U,SCHMIDT W,KIEFER W,et al. High surface area mesoporous SiC synthesized via nanocasting and carbothermal reduction process[J]. Journal of Materials Science,2005,40(18):5091-5093.[19] 李镇江,马凤麟,张猛,等. La或N掺杂SiC纳米线的制备、场发射性能及第一性原理计算[J]. 青岛科技大学学报(自然科学版),2013,34(4):336-341.[20] 董莉莉,王英勇,童希立,等. 硼掺杂SiC的制备、表征及其可见光分解水产氢性能[J]. 物理化学学报,2014,30(1):135-140.[21] 陈达城. VA族元素掺杂碳化硅纳米管的第一性原理研究[D]. 兰州:兰州理工大学,2014.[22] 张晓旭. SiC半导化掺杂电子结构及物理性质的第一性原理计算[D]. 伊宁:伊犁师范学院,2016.

相似文献/References:

[1]徐 慢,王 亮,祝 云,等.多孔大通量莫来石相碳化硅陶瓷的制备与表征[J].武汉工程大学学报,2015,37(02):15.[doi:10. 3969/j. issn. 1674-2869. 2015. 02. 004]
 ,,et al.Fabrication and characterization of big flux and porous mullite phase of silicon carbide ceramic[J].Journal of Wuhan Institute of Technology,2015,37(05):15.[doi:10. 3969/j. issn. 1674-2869. 2015. 02. 004]
[2]罗马亚,陈常连*,黄小雨,等.氮化硅结合碳化硅多孔陶瓷支撑体的制备与表征[J].武汉工程大学学报,2016,38(05):452.[doi:10. 3969/j. issn. 1674?2869. 2016. 05. 008]
 LUO Maya,CHEN Changlian*,HUANG Xiaoyu,et al.Preparation and Characterization of Porous Ceramic Supports of Silicon Nitride-Bonded Silicon Carbide[J].Journal of Wuhan Institute of Technology,2016,38(05):452.[doi:10. 3969/j. issn. 1674?2869. 2016. 05. 008]
[3]安子博,汪 晗,竺昌海,等.硅碳直接反应法制备超细β-SiC粉[J].武汉工程大学学报,2016,38(06):560.[doi:10. 3969/j. issn. 1674?2869. 2016. 06. 009]
 AN Zibo,WANG Han,ZHU Changhai,et al.Preparation of Ultrafine-SiC Powder by Direct Reaction of Silicon and Carbon[J].Journal of Wuhan Institute of Technology,2016,38(05):560.[doi:10. 3969/j. issn. 1674?2869. 2016. 06. 009]
[4]梁 欣,陈常连*,周诗聪,等.碳化硅添加对氮化硅转化为碳化硅晶粒形貌的影响[J].武汉工程大学学报,2019,(01):60.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 009]
 LIANG Xin,CHEN Changlian*,ZHOU Shicong,et al.Effect of Addition of Silicon Carbide on Morphology of Silicon Carbide Grains Transformed from Silicon Nitride[J].Journal of Wuhan Institute of Technology,2019,(05):60.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 009]
[5]周诗聪,陈常连*,梁 欣,等.不同粒径碳化硅粉体的复合烧结与表征[J].武汉工程大学学报,2020,42(03):298.[doi:10.19843/j.cnki.CN42-1779/TQ.201905018]
 ZHOU Shicong,CHEN Changlian*,LIANG Xin,et al.Composite Sintering and Characterization of SiC Powders with Different Particle Sizes[J].Journal of Wuhan Institute of Technology,2020,42(05):298.[doi:10.19843/j.cnki.CN42-1779/TQ.201905018]
[6]邹崎峰,杜寒威,陈 思,等.丝素蛋白/聚丙烯酰胺基导电复合水凝胶的制备及力学传感性能[J].武汉工程大学学报,2023,45(02):169.[doi:10.19843/j.cnki.CN42-1779/TQ.202112018]
 ZOU Qifeng,DU Hanwei,CHEN Si,et al.Preparation and Mechanical Sensing Properties of Silk Fibroin/Polyacrylamide-Based Conductive Composite Hydrogels[J].Journal of Wuhan Institute of Technology,2023,45(05):169.[doi:10.19843/j.cnki.CN42-1779/TQ.202112018]
[7]许 杰,杜寒威,张 桥,等.磷掺杂还原氧化石墨烯/聚苯胺复合水凝胶的制备及性能研究[J].武汉工程大学学报,2023,45(04):407.[doi:10.19843/j.cnki.CN42-1779/TQ.202203015]
 XU Jie,DU Hanwei,ZHANG Qiao,et al.Preparation and Performance of Phosphorus-Doped ReducedGraphene Oxide/Polyaniline Composite Hydrogel[J].Journal of Wuhan Institute of Technology,2023,45(05):407.[doi:10.19843/j.cnki.CN42-1779/TQ.202203015]

备注/Memo

备注/Memo:
收稿日期:2018-02-25基金项目:国家自然科学基金(71303180);国家科技支撑计划项目(2013BAB07B05);武汉工程大学研究生教育创新基金(CX2017010)作者简介:袁 密,硕士研究生。E-mail:[email protected]*通讯作者:薛 俊,博士,副教授。E-mail:[email protected]引文格式:袁密,高峰,竺昌海,等. 磷掺杂碳化硅的制备及其影响因素[J]. 武汉工程大学学报,2018,40(5):538-542.
更新日期/Last Update: 2018-10-23