|本期目录/Table of Contents|

[1]黄 鑫,刘子欣,胡利明*.反应型小分子荧光探针在疾病检测研究中的应用[J].武汉工程大学学报,2019,(01):1-11.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 001]
 HUANG Xin,LIU Zixin,HU Liming*.Application of Reactive Small Molecular Fluorescent Probes in Disease Detection[J].Journal of Wuhan Institute of Technology,2019,(01):1-11.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 001]
点击复制

反应型小分子荧光探针在疾病检测研究中的应用(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2019年01期
页码:
1-11
栏目:
化学与化学工程
出版日期:
2019-03-23

文章信息/Info

Title:
Application of Reactive Small Molecular Fluorescent Probes in Disease Detection
文章编号:
20190101
作者:
黄 鑫刘子欣胡利明*
北京工业大学生命科学与生物工程学院,北京市环境与病毒肿瘤学重点实验室,北京 100124
Author(s):
HUANG Xin LIU Zixin HU Liming*
College of Life Science and Bioengineering & Beijing Key Laboratory of Environmental and Oncology, Beijing University of Technology,Beijing 100124, China
关键词:
反应型荧光探针生物标记物细胞成像疾病检测
Keywords:
reactive fluorescent probe biomarkers cell imaging disease detection
分类号:
Q74
DOI:
10. 3969/j. issn. 1674?2869. 2019. 01. 001
文献标志码:
A
摘要:
反应型小分子荧光探针能与生物标志物特异性响应而实现荧光“开-关”效应,与传统方法相比具有良好的选择性和更高的灵敏度。阴离子、阳离子、还原性物质、活性氧和酶常用于疾病研究中的生物标志物。综述了反应型小分子荧光探针在疾病标志物检测研究中的应用,介绍了探针类型、作用机理、设计思路以及不足之处,并对这类探针的发展进行展望。这类探针按作用机理主要分为三种类型:“Turn-on”型,“Turn-off”型和比率型。其难点是:实现可逆性检测的同时,保持较好的安全性、稳定性与灵敏度,并使吸收和发射波长达到近红外区域。随着纳米技术的飞速发展,与纳米材料相结合的新型探针将在疾病的预防、诊断与治疗中发挥更为重要的作用。
Abstract:
The reactive small molecule fluorescent probes, which can achieve the fluorescence "on-off" effect with the specific recognization of biomarker, possess good selectivity and higher sensitivity compared with the traditional methods. The anions, cations, reducing substances, reactive oxygen species and enzymes are usually used as biomarkers in disease research. We reviewed the applications of reactive small molecule fluorescent probes in disease detection research including the types, mechanism, design strategies, shortcomings and the future prospection. According to the reaction mechanism, the reactive fluorescent probes can be divided into three types: "Turn-on", "Turn-off" and ratio. The pivotal study in the future is to develop the probes with good reversibility detection,security, stability and sensitivity, which can adsorb and emit wavelength in the near infrared region. With the advances of nanomaterials and nanotechnology, novel fluorescence probes will play important roles in the prevention, diagnosis and treatment of diseases.

参考文献/References:

[1] SUN Y, CAO W P, LI S L, et al. Ultrabright and multicolorful fluorescence of amphiphilic polyethyleneimine polymer dots for efficiently combined imaging and therapy [J]. Scientific Reports,2013,3(10):3036-3041. [2] HU L M,SUN Y,LI S L,et al. Multifunctional carbon dots with high quantum yield for imaging and gene delivery [J]. Carbon,2014,67:508-513. [3] SUN Y, CAO W P, HU L M, et al. Controlling fluorescence emission from oxygen-doped polyethylenimines and its potential for gene delivery combined with imaging [J]. Journal of Controlled Release,2013,172:E122. [4] TERAI T,NAGANO T.Fluorescent probes for bioimaging applications[J]. Current Opinion in Chemical Biology,2008,12(5):515-521. [5] HERMANSON G T.Bioconjugate techniques[M]. Rockford:Academic Press,2013. [6]  YU H B, LI M, WANG W P,et al.High throughput screening technologies for ion channels[J]. Acta Pharmacologica Sinica,2016,37(1):34-43. [7]  BAI M,BORNHOP D J.Recent advances in receptor- targeted fluorescent probes for in vivo cancer imaging[J]. Current Medicinal Chemistry,2012,19(28):4742-4758. [8]  SCHWALL C T,ALDER N N. Site-specific fluorescent probe labeling of mitochondrial membrane proteins[M]. Totowa N J: Humana Press,2013:103-120. [9]  CHAN J,DODANI S C,CHANG C J.Reaction-based small-molecule fluorescent probes for chemoselective bioimaging[J]. Nature Chemistry,2012,4(12): 973-984. [10] HU W,ZENG L Y, WANG Y Y, et al. A ratiometric two-photon fluorescent probe for fluoride ion imaging in living cells and zebrafish[J]. Analyst,2016,141(18):5450-5455. [11] HAO Y Q,NGUYEN K H,ZHANG Y T,et al. A highly selective and ratiometric fluorescent probe for cyanide by rationally altering the susceptible H-atom[J]. Talanta,2018,176:234-241. [12] LIU Y, SU Q Q, CHEN M, et al. Near-infrared upconversion chemodosimeter for in vivo detection of Cu2+ in wilson disease[J]. Advanced Materials,2016,28(31):6625-6630. [13] HIRAYAMA T, VAN DE BITTNER G C,GRAY L W,et al. Near- infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(7):2228-2233. [14] YUAN L, LIN W Y, ZHENG K B, et al. ChemInform abstract: far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging[J]. Cheminform,2013,44(20):622-661. [15] IDRIS N M,JAYAKUMAR M K,BANSAL A,et al. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications[J]. Chemical Society Reviews,2015,44(6):1449-1478. [16] LIU Q ,FENG W, YANG T S, et al. Upconversion luminescence imaging of cells and small animals[J]. Nature Protocols,2013,8(10):2033-2044. [17] ZHOU B, SHI B Y, JIN D C, et al. Controlling upconversion nanocrystals for emerging applications. [J]. Nature Nanotechnology,2015,10(11):924-936. [18] ZHANG Y J,WANG X,ZHOU Y,et al. Influence of donor on the sensing performance of a series of through-bond energy transfer-based two-photon fluorescent Cu2+ probes [J]. Photochemistry & Photobiology,2016,92(4):528-536. [19] HUANG R, ZHENG X L, WANG C C, et al. Reaction based two-photon fluorescent probe for turn-on mercury (II) sensing and imaging in live cells[J]. Chemistry an Asian Journal,2012,7(5):915-918. [20] SUI B L, TANG S M, LIU T H, et al. Novel BODIPY-based fluorescence turn-on sensor for Fe3+ and its bioimaging application in living cells[J]. ACS Applied Materials & Interfaces,2014,6(21):18408-184012. [21] HUANG X,LI Z, CAO T, et al. A methylene blue- based near-infrared fluorescent probe for rapid detection of hypochlorite in tap water and living cells[J]. RSC Advances,2018,8: 14603-14608. [22] 后际挺,李坤,覃彩芹,等. 活性氧簇的小分子荧光探针研究进展[J]. 有机化学,2018,38(3):612-628. [23] DONG B L, SONG X Z, KONG X Q, et al. Simultaneous near-infrared and two-photon in vivo imaging of H2O2 using a ratiometric fluorescent probe based on the unique oxidative rearrangement of oxonium[J]. Advanced Materials,2016,28(39):8755-8759. [24] ZHOU X Q,LESIAK L,LAI R,et al. Chemoselective alteration of fluorophore scaffolds as a strategy for the development of ratiometric chemodosimeters[J]. Angewandte Chemie,2017,129(15):4197-4200. [25] LIU F,DU J,SONG D,et al. A sensitive fluorescent sensor for the detection of endogenous hydroxyl radicals in living cells and bacteria and direct imaging with respect to its ecotoxicity in living zebra fish[J]. Chemical Communications,2016,52(25):4636-4639. [26] CAI Q, FEI Y, AN H W, et al. Macrophage- instructed intracellular S. aureus killing by targeting photodynamic dimers [J]. ACS Applied Materials Interfaces,2018,10:9197-9202. [27] CAI Q, FEI Y, HU L M, et al. Chemotaxis-instructed intracellular S. aureus infection detection by a targeting and self-assembly signal enhanced photoacoustic probe [J]. Nano Letters,2018,18(10):6229-6236. [28] G?GGEL R, WINOTO-MORBACH S,VIELHABER G,et al. PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide [J]. Nature Medicine,2004,10:155-160. [29] PETERSEN N H, OLSEN O D, GROTH-PEDERSEN L,et al. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase[J]. Cancer Cell,2013,24:379-393. [30] CARPINTEIRO A, BECKER K A,JAPTOK L,et al. Regulation of hematogenous tumor metastasis by acid sphingomyelinase [J]. EMBO Molecular Medicine,2015,7:714-734. [31] GULBINS E, PALMADA M,REICHEL M,et al. Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs [J]. Nature Medicine,2013,19:934-938. [32] PINKERT T, FURKERT D, KORTE T, et al. Amplification of a FRET probe by lipid-water partition for the detection of acid sphingomyelinase in live cells [J]. Angewandte Chemie International Edition,2017,56:2790-2794. [33] LORENTE J A, VALENZUELA H,MOROTE J,et al. Serum bone alkaline phosphatase levels enhance the clinical utility of prostate specific antigen in the staging of newly diagnosed prostate cancer patients [J]. European Journal of Nuclear Medicine,1999,26(6):625-632. [34] KINUE O, KATSUYA S, YOSHITAKA M, et al. High-molecular intestinal alkaline phosphatase in chronic liver diseases [J]. Journal of Clinical Laboratory Analysis,2007,21:133-139. [35] COLOMBATTO P, RANDONE A,CIVITICO G,et al. Hepatitis G virus RNA in the serum of patients with elevated gamma glutamyl transpeptidase and alkaline phosphatase: a specific liver disease [J]. Journal of Viral Hepatitis,1996(3):301-306. [36] COUTTENYE M M, D’HAESE P C, VAN HOOF V O,et al. Low serum levels of alkaline phosphatase of bone origin: a good marker of adynamic bone disease in haemodialysis patients [J]. Nephrology Dialysis Transplantation,1996, 11:1065-1072. [37] LI S J, LI C Y,LI Y F,et al. Facile and sensitive near-infrared fluorescence probe for the detection of endogenous alkaline phosphatase activity in vivo[J]. Analytical Chemistry,2017,89:6854-6860. [38] FREEMAN R,ELBAZ J,GILL R,et al. Analysis of dopamine and tyrosinase activity on ion-sensitive field-effect transistor (ISFET) devices[J]. Chemistry A European Journal,2007,13(26):7288-7293. [39] LI Z P, WANG Y F, ZHANG X, et al. A tyrosinase- triggered oxidative reaction-based "Turn-on" fluorescent probe for imaging in living melanoma cells[J]. Sensors and Actuators B: Chemical,2017,242:189-194. [40] XUE X D, JIN S B, LI Z P, et al. Through-bond energy transfer cassette with dual-stokes shifts for "double checked" cell imaging[J]. Advanced Science,2017(4):1700229-1700235. [41] 李志鹏. 酪氨酸酶荧光探针的设计、合成及生物学效应研究[D]. 北京:北京工业大学,2018. [42] LI Z P, WANG Y F, ZENG C C, et al. Ultrasensitive tyrosinase-activated turn-on near-infrared fluorescent probe with a rationally designed urea bond for selective imaging and photodamage to melanoma cells[J]. Analytical Chemistry, 2018, 90: 3666-3669. [43] YIN C X, HUO F J, ZHANG J J, et al. Thiol- addition reactions and their applications in thiol recognition [J]. Chemical Society Reviews,2013,42:6032-6059. [44] TAPIERO H, TOWNSEND D M, TEW K D, et al. The antioxidant role of selenium and seleno-compounds [J]. Biomed Pharmacoth,2003,57:134-144. [45] WANG Z Q,WU H,LIU P L,et al. A self-immolative prodrug nanosystem capable of releasing a drug and a NIR reporter for in vivo imaging and therapy [J]. Biomaterials,2017,139:139-150. [46] JIANG X Q,CHEN J W,BAJIC’ A,et al. Quantitative real-time imaging of glutathione [J]. Nature Communications,2017,8:16163-16174. [47] GRIMM J B,ENGLISH B P,CHEN J J,et al. A general method to improve fluorophores for live-cell and single-molecule microscopy[J]. Nature Methods,2015,12(3):244-250. [48] GONG D Y, RU J X, CAO T,et al. Two-stage ratiometric fluorescent responsive probe for rapid glutathione detection based on BODIPY thiol-halogen nucleophilic mono-or disubstitution [J]. Sensors and Actuators B: Chemical,2018,258:72-79. [49] SEDGWICK A C, HAN H H, GARDINER J E,et al. The development of a novel AND logic based fluorescence probe for the detection of peroxynitrite and GSH [J]. Chemical Science,2018(9):3672-3676.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2018-11-23基金项目:国家自然科学基金(21272020)作者简介:黄 鑫,硕士研究生。E-mail:[email protected]。*通讯作者:胡利明,博士,教授,博士研究生导师。 E-mail:[email protected]引文格式:黄鑫,刘子欣,胡利明. 反应型小分子荧光探针在疾病检测研究中的应用[J]. 武汉工程大学学报,2019,41(1):1-11.
更新日期/Last Update: 2019-02-18