|本期目录/Table of Contents|

[1]熊寒颖,鲁统伟*,闵 峰,等.基于单一神经网络的实时人脸检测[J].武汉工程大学学报,2019,(05):489-493.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 015]
 XIONG Hanying,LU Tongwei*,MIN Feng,et al.Real-Time Face Detection Based on Single Neural Network[J].Journal of Wuhan Institute of Technology,2019,(05):489-493.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 015]
点击复制

基于单一神经网络的实时人脸检测(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2019年05期
页码:
489-493
栏目:
机电与信息工程
出版日期:
2021-01-24

文章信息/Info

Title:
Real-Time Face Detection Based on Single Neural Network
文章编号:
20190515
作者:
熊寒颖鲁统伟*闵 峰蒋冲宇
武汉工程大学计算机科学与工程学院,湖北 武汉 430205
Author(s):
XIONG Hanying LU Tongwei*MIN Feng JIANG Chongyu
School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
卷积神经网络多尺度人脸检测特征图融合CPU
Keywords:
convolution neural network multi-scaleface detection feature map fusion CPU
分类号:
TP391.4
DOI:
10. 3969/j. issn. 1674?2869. 2019. 05. 015
文献标志码:
A
摘要:
由于人脸尺度多样性使得人脸检测算法在CPU上运行速度受限,提出了一种新的基于单一神经网络的实时人脸检测算法。首先在网络初始卷积层和池化层中设置较大的卷积核尺寸和步长,缩小输入图像尺寸利于实时检测;然后网络将浅层特征图和深层特征图相融合,增强上下文联系和减少重复检测;最后在多个卷积层上预测人脸位置,利用预测框重叠策略,实现多尺度的人脸检测来提升图像中小尺寸人脸的检测精度。在人脸检测数据集基准和野外标注人脸数据集上测试实验结果表明,本文算法模型精度能够达到92.1%和95.4%。与此同时,本文算法在CPU上实现21帧/s的检测速度。
Abstract:
To improve the limited speed of face detection algorithm on central processing unit (CPU)caused by the diversity of the facescales,we proposed a real-time face detection method based on a single neural network. Firstly, a large convolution kernel and step size were used in the initial convolution and pooling layers, which were able to reduce the size of input images. Then, the shallow and deep feature maps were merged to enhance the context-connection and reduce repeated boxes. Finally, we predicted the face location based on the output of different convolution layers. By using the strategy of overlapping prediction boxes, our method is able to improve the detection accuracy of the smaller size face of input images. Experimental results on face detection dataset and benchmark and annotated face dataset in the wild achieve accuracies of 92% and 95.4%, respectively. Above all, our face detection technique can achieve a high detection speed of 21 frames per second on CPU, which can satisfy real-time detection requirements.

参考文献/References:

[1] 夏平平,吕太之. 动态人脸识别系统的设计与实现[J]. 武汉工程大学学报,2011,33(10):107-110. [2] 冯超. 深度学习轻松学[M]. 北京:电子工业出版社,2018:4. [3] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[J]. CVPR (1),2001,1(3):511-518. [4] 阮锦新,尹俊勋. 基于人脸特征和AdaBoost算法的多姿态人脸检测[J]. 计算机应用,2010,30(4):967-970. [5] AHONEN T, HADID A, PIETIKAINEN M. Face description with local binary patterns:application to face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(12):2037-2041. [6] 薛超,于宏志,王景彬. 基于卷积神经网络的级联人脸检测[J]. 中国安防,2017(11):93-96. [7] YANG B,YAN J J,LEI Z,et al.Aggregate channel features for multi-view face detection[C]//IEEE International Joint Conference on Biometrics.Florida:IEEE,2014:1-8. [8] CHEN D, REN S Q, WEI Y C, et al.Joint cascade face detection and alignment[C]//European Conference on Computer Vision.Zurich:ECCV,2014:109-122. [9] GHIASI G,FOWLKES C C. Occlusion coherence: detecting and localizing occluded faces[J]. Computer Science,2015:1-9. [10] ZHAN K P,ZHANG Z P,LI Z F,et al.Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters,2016,23(10):1499-1503[11] ZHANG S F,ZHU X Y,LEI Z,et al.FaceBoxes:a cpu real-time face detector with high accuracy[C]//2017 IEEE International Joint Conference on Biometrics (IJCB). Colorado:IEEE,2017:1-9. [12] 卢涛,章瑾,陈白帆,等. 多尺度自适应配准的视频超分辨率算法[J]. 武汉工程大学学报,2016,38(2):178-184. [13] 汪家明,卢涛. 基于多尺度残差深度神经网络的卫星图像超分辨率算法[J]. 武汉工程大学学报,2018,40(4):440-445. [14] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.LasVegas:IEEE,2016:2818-2826. [15] SHANG W, SOHN K, ALMEIDA D, et al.Understanding and improving convolutional neural networks via concatenated rectified linear units[C]//International Conference on Machine Learning.New York:ICML,2016:2217-2225. [16] 王成济,罗志明,钟准,等. 一种多层特征融合的人脸检测方法[J]. 智能系统学报,2018,13(1):138-146.

相似文献/References:

[1]汪家明,卢 涛*.多尺度残差深度神经网络的卫星图像超分辨率算法[J].武汉工程大学学报,2018,40(04):440.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 018]
 WANG Jiaming,LU Tao *. Satellite Imagery Super-Resolution Algorithm via Multi-Scale Residual Deep Neural Network[J].Journal of Wuhan Institute of Technology,2018,40(05):440.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 018]
[2]张苏沛,刘 军*,肖澳文,等.基于卷积神经网络的验证码识别[J].武汉工程大学学报,2019,(01):89.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 015]
 ZHANG Supei,LIU Jun*,XIAO Aowen,et al.CAPTCHA Recognition Based on Convolutional Neural Network[J].Journal of Wuhan Institute of Technology,2019,(05):89.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 015]
[3]肖澳文,刘 军*,张苏沛,等.基于CNN的三维人体姿态估计方法[J].武汉工程大学学报,2019,(02):168.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 013]
 XIAO Aowen,LIU Jun*,ZHANG Supei,et al.Three-Dimensional Human Pose Estimation Based on Convolution Neural Network[J].Journal of Wuhan Institute of Technology,2019,(05):168.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 013]
[4]陈希彤,卢 涛*.基于全局深度分离卷积残差网络的高效人脸识别算法[J].武汉工程大学学报,2019,(03):276.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 014]
 CHEN Xitong,LU Tao *.Efficient Face Recognition Algorithm Using Global Deep Separable Convolutional and Residual Network[J].Journal of Wuhan Institute of Technology,2019,(05):276.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 014]
[5]王丽亚,刘昌辉*,蔡敦波,等.基于CNN-BiLSTM网络引入注意力模型的文本情感分析[J].武汉工程大学学报,2019,(04):386.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 016]
 WANG Liya,LIU Changhui*,CAI Dunbo,et al.Text Sentiment Analysis Based on CNN-BiLSTM Network and Attention Model[J].Journal of Wuhan Institute of Technology,2019,(05):386.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 016]
[6]杜梦星,王彦伟*.基于CNN的突发事件预警系统的设计与实现[J].武汉工程大学学报,2020,42(02):207.[doi:10.19843/j.cnki.CN42-1779/TQ.201910016]
 DU Mengxing,WANG Yanwei*.Design and Implementation of Emergency Warning System Based on Convolution Neural Network[J].Journal of Wuhan Institute of Technology,2020,42(05):207.[doi:10.19843/j.cnki.CN42-1779/TQ.201910016]
[7]江满星,赵彤洲*,吴泽俊.基于目标形状卷积神经网络在舰船分类中的应用[J].武汉工程大学学报,2020,42(02):213.[doi:10.19843/j.cnki.CN42-1779/TQ.201911022]
 JIANG Manxing,ZHAO Tongzhou*,WU Zejun.Application of Convolution Neural Network Based on Target Shape in Ships and Warships Classification[J].Journal of Wuhan Institute of Technology,2020,42(05):213.[doi:10.19843/j.cnki.CN42-1779/TQ.201911022]

备注/Memo

备注/Memo:
收稿日期:2019-05-09基金项目:武汉工程大学第十届研究生教育创新基金(CX2018193)作者简介:熊寒颖,硕士研究生。E-mail:[email protected]*通讯作者:鲁统伟,博士,副教授。E-mail:[email protected]引文格式:熊寒颖,鲁统伟,闵峰,等. 基于单一神经网络的实时人脸检测[J]. 武汉工程大学学报,2019,41(5):489-493.
更新日期/Last Update: 2019-10-29