[1] 夏平平,吕太之. 动态人脸识别系统的设计与实现[J]. 武汉工程大学学报,2011,33(10):107-110. [2] 冯超. 深度学习轻松学[M]. 北京:电子工业出版社,2018:4. [3] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[J]. CVPR (1),2001,1(3):511-518. [4] 阮锦新,尹俊勋. 基于人脸特征和AdaBoost算法的多姿态人脸检测[J]. 计算机应用,2010,30(4):967-970. [5] AHONEN T, HADID A, PIETIKAINEN M. Face description with local binary patterns:application to face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(12):2037-2041. [6] 薛超,于宏志,王景彬. 基于卷积神经网络的级联人脸检测[J]. 中国安防,2017(11):93-96. [7] YANG B,YAN J J,LEI Z,et al.Aggregate channel features for multi-view face detection[C]//IEEE International Joint Conference on Biometrics.Florida:IEEE,2014:1-8. [8] CHEN D, REN S Q, WEI Y C, et al.Joint cascade face detection and alignment[C]//European Conference on Computer Vision.Zurich:ECCV,2014:109-122. [9] GHIASI G,FOWLKES C C. Occlusion coherence: detecting and localizing occluded faces[J]. Computer Science,2015:1-9. [10] ZHAN K P,ZHANG Z P,LI Z F,et al.Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters,2016,23(10):1499-1503[11] ZHANG S F,ZHU X Y,LEI Z,et al.FaceBoxes:a cpu real-time face detector with high accuracy[C]//2017 IEEE International Joint Conference on Biometrics (IJCB). Colorado:IEEE,2017:1-9. [12] 卢涛,章瑾,陈白帆,等. 多尺度自适应配准的视频超分辨率算法[J]. 武汉工程大学学报,2016,38(2):178-184. [13] 汪家明,卢涛. 基于多尺度残差深度神经网络的卫星图像超分辨率算法[J]. 武汉工程大学学报,2018,40(4):440-445. [14] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.LasVegas:IEEE,2016:2818-2826. [15] SHANG W, SOHN K, ALMEIDA D, et al.Understanding and improving convolutional neural networks via concatenated rectified linear units[C]//International Conference on Machine Learning.New York:ICML,2016:2217-2225. [16] 王成济,罗志明,钟准,等. 一种多层特征融合的人脸检测方法[J]. 智能系统学报,2018,13(1):138-146.
[1]汪家明,卢 涛*.多尺度残差深度神经网络的卫星图像超分辨率算法[J].武汉工程大学学报,2018,40(04):440.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 018]
WANG Jiaming,LU Tao *. Satellite Imagery Super-Resolution Algorithm via Multi-Scale Residual Deep Neural Network[J].Journal of Wuhan Institute of Technology,2018,40(05):440.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 018]
[2]张苏沛,刘 军*,肖澳文,等.基于卷积神经网络的验证码识别[J].武汉工程大学学报,2019,(01):89.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 015]
ZHANG Supei,LIU Jun*,XIAO Aowen,et al.CAPTCHA Recognition Based on Convolutional Neural Network[J].Journal of Wuhan Institute of Technology,2019,(05):89.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 015]
[3]肖澳文,刘 军*,张苏沛,等.基于CNN的三维人体姿态估计方法[J].武汉工程大学学报,2019,(02):168.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 013]
XIAO Aowen,LIU Jun*,ZHANG Supei,et al.Three-Dimensional Human Pose Estimation Based on Convolution Neural Network[J].Journal of Wuhan Institute of Technology,2019,(05):168.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 013]
[4]陈希彤,卢 涛*.基于全局深度分离卷积残差网络的高效人脸识别算法[J].武汉工程大学学报,2019,(03):276.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 014]
CHEN Xitong,LU Tao *.Efficient Face Recognition Algorithm Using Global Deep Separable Convolutional and Residual Network[J].Journal of Wuhan Institute of Technology,2019,(05):276.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 014]
[5]王丽亚,刘昌辉*,蔡敦波,等.基于CNN-BiLSTM网络引入注意力模型的文本情感分析[J].武汉工程大学学报,2019,(04):386.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 016]
WANG Liya,LIU Changhui*,CAI Dunbo,et al.Text Sentiment Analysis Based on CNN-BiLSTM Network and Attention Model[J].Journal of Wuhan Institute of Technology,2019,(05):386.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 016]
[6]杜梦星,王彦伟*.基于CNN的突发事件预警系统的设计与实现[J].武汉工程大学学报,2020,42(02):207.[doi:10.19843/j.cnki.CN42-1779/TQ.201910016]
DU Mengxing,WANG Yanwei*.Design and Implementation of Emergency Warning System Based on Convolution Neural Network[J].Journal of Wuhan Institute of Technology,2020,42(05):207.[doi:10.19843/j.cnki.CN42-1779/TQ.201910016]
[7]江满星,赵彤洲*,吴泽俊.基于目标形状卷积神经网络在舰船分类中的应用[J].武汉工程大学学报,2020,42(02):213.[doi:10.19843/j.cnki.CN42-1779/TQ.201911022]
JIANG Manxing,ZHAO Tongzhou*,WU Zejun.Application of Convolution Neural Network Based on Target Shape in Ships and Warships Classification[J].Journal of Wuhan Institute of Technology,2020,42(05):213.[doi:10.19843/j.cnki.CN42-1779/TQ.201911022]