[1] 杨帆, 陈茂林, 吴迅,等. 基于传感器信息融合技术的森林火灾报警系统[J]. 华中科技大学学报(自然科学版), 2013, 41(2): 22-25. [2] 方帅, 祁林娟, 于磊. 多特征分析的视频烟雾检测方法[J]. 计算机工程与应用, 2016, 52(13): 222-227. [3] 叶剑锋, 王化明. AdaBoost检测结合SOM的自动人脸识别方法[J]. 哈尔滨工程大学学报, 2018, 39(1): 129-134. [4] 张苏沛, 刘军, 肖澳文,等. 基于卷积神经网络的验证码识别[J]. 武汉工程大学学报, 2019, 41(1): 89-92. [5] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014. [6] 姚太伟, 王慧琴, 胡燕. 基于小波变换和稀疏光流法的火灾烟雾检测[J]. 计算机工程, 2012, 38(6): 204-206. [7] 刘颖, 顾小东, 李大湘. 基于LSA和SVM的火灾烟雾检测算法[J]. 西安邮电大学学报, 2014, 19(6): 6-10. [8] MAO W T, WANG W P, DOU Z, et al. Fire recognition based on multi-channel convolutional neural network[J]. Fire technology, 2018, 54(2): 531-554. [9] 陈俊周, 汪子杰, 陈洪瀚,等. 基于级联卷积神经网络的视频动态烟雾检测[J]. 电子科技大学学报, 2016, 45(6): 992-996. [10] YIN Z J, WAN B Y, YUAN F N, et al. A deep normalization and convolutional neural network for image smoke detection[C]//Proceedings of the IEEE conference on compute vision and patten recognition. Hawaii:IEEE,2017(5): 18429-18438. [11] MUHAMMAD K, A HMAD J, MEHMOOD I ,et al. Convolutional neural networks based fire detection in surveillance videos[C]//Proceedings of the IEEE conference on compute vision and patten recognition. Kansas city:IEEE, 2018(6): 18174-18183. [12] 龙群芳, 张东. 一种基于 KNN 纹理分类的超声图像自动分割方法[J]. 科技通报, 2016, 32(7): 138-142. [13] 牛冲. 基于图像处理的草莓病害识别方法研究[D]. 太原: 太原理工大学, 2016. [14] ZIVKOVIC Z, VAN DER HEIJDEN F. Efficient adaptive density estimation per image pixel for the task of background subtraction[J]. Pattern Recognition Letters, 2006, 27(7): 773-780. [15] 赵亮, 骆炎民, 骆翔宇. 基于背景动态更新与暗通道先验的火灾烟雾检测算法[J]. 计算机应用研究, 2017, 34(3): 957-960. [16] 傅天驹, 郑嫦娥, 田野,等. 复杂背景下基于深度卷积神经网络的森林火灾识别[J]. 计算机与现代化, 2016 (3): 52-57. [17] XU X D, ZHANG H X, DAI X, et al. SDN based next generation mobile network with service slicing and trials[J]. China Communications, IEEE, 2014, 11(2): 65-77. [18] 王正来, 黄敏, 朱启兵,等. 基于并行深度残差网络的堆场烟雾检测方法[J]. 激光与光电子学进展, 2018, 55(5): 146-152.
[1]董方武,王绍卜,马子余.基于ZigBee的碱液质量分数在线检测系统设计[J].武汉工程大学学报,2010,(01):100.
DONG Fang wu,WANG Shao bu,MA Zi yu.Design of realtime lye Mass fraction detection system based on ZigBee technology[J].Journal of Wuhan Institute of Technology,2010,(06):100.
[2]黎俊波,李楠楠,余响林*,等.高选择性铁离子荧光探针的合成及性质研究[J].武汉工程大学学报,2010,(05):11.[doi:10.3969/j.issn.16742869.2010.05.003]
LI Jun bo,LI Nan nan,YU Xiang lin,et al.Synthesis and properties of the Fe3+ fluorescence probewith high selectivity[J].Journal of Wuhan Institute of Technology,2010,(06):11.[doi:10.3969/j.issn.16742869.2010.05.003]
[3]孙 威,熊双玉,彭掌珠,等.荧光多孔二氧化硅纳米微球对Hg+离子的选择性检测和去除[J].武汉工程大学学报,2020,42(05):501.[doi:10.19843/j.cnki.CN42-1779/TQ.202001012]
SUN Wei,XIONG Shuangyu,PENG Zhangzhu,et al.Fluorescent Porous Silica Nanospheres for Selective Detection and Removal of Hg+ Ion[J].Journal of Wuhan Institute of Technology,2020,42(06):501.[doi:10.19843/j.cnki.CN42-1779/TQ.202001012]
[4]王永靖,余良浪,秦 琴*,等.室内空气甲醛检测及去除技术的最新进展[J].武汉工程大学学报,2022,44(05):482.[doi:10.19843/j.cnki.CN42-1779/TQ.202205010]
WANG Yongjing,YU Lianglang,QIN Qin*,et al.Recent Advances of Indoor Air Formaldehyde Detection and?Removal Technologies[J].Journal of Wuhan Institute of Technology,2022,44(06):482.[doi:10.19843/j.cnki.CN42-1779/TQ.202205010]
[5]南齐钰,熊知萌,梁文杰,等.商业化试剂构建荧光探针用于肼的检测及防伪识别[J].武汉工程大学学报,2023,45(05):490.[doi:10.19843/j.cnki.CN42-1779/TQ.202210033]
NAN Qiyu,XIONG Zhimeng,LIANG Wenjie,et al.Commercial Reagent as Fluorescent Probe for Hydrazine Detection and Anti-Counterfeiting Identification[J].Journal of Wuhan Institute of Technology,2023,45(06):490.[doi:10.19843/j.cnki.CN42-1779/TQ.202210033]