|本期目录/Table of Contents|

[1]张筑宏,吴接呈,骆焱平*.光活化农药作用机理的研究进展[J].武汉工程大学学报,2020,42(01):18-27.[doi:10.19843/j.cnki.CN42-1779/TQ.201908007]
 ZHANG Zhuhong,WU Jiecheng,LUO Yanping*.Progress in Action Model of Photo-Activated Pesticide[J].Journal of Wuhan Institute of Technology,2020,42(01):18-27.[doi:10.19843/j.cnki.CN42-1779/TQ.201908007]
点击复制

光活化农药作用机理的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年01期
页码:
18-27
栏目:
化学与化学工程
出版日期:
2021-01-25

文章信息/Info

Title:
Progress in Action Model of Photo-Activated Pesticide
文章编号:
1674 - 2869(2020)01 - 0018 - 10
作者:
张筑宏吴接呈骆焱平*
海南大学植物保护学院,海南 海口 570228
Author(s):
ZHANG Zhuhong WU Jiecheng LUO Yanping*
College of plant protection,Hainan University, Haikou 570228, China
关键词:
光活化农药作用机理结构活性
Keywords:
photo-activate pesticide mechanism of action structures activity
分类号:
S481
DOI:
10.19843/j.cnki.CN42-1779/TQ.201908007
文献标志码:
A
摘要:
光作为农田生态系统中最基本的环境因子对农药药效有重要影响,与传统农药相比,光活化农药因具有多位点的高效毒杀作用、不易产生抗性和环境兼容性好等特点受到农药研究者的青睐。综述了光活化农药的作用机理,光活化农药主要通过产生自由基和单线态氧,并进一步与氧反应产生活性氧,破坏生物膜和细胞器的结构与功能,或在无氧情况下与生物分子直接发生反应发挥光活化毒性,达到杀虫、抑菌、除草的效果。此外,对光活化农药的主要结构类型及其生物活性进行归纳总结与展望。通过对化学结构的修饰增强光活化农药的农用活性,并在细胞代谢水平上系统研究光活化农药的作用机制,可为新农药的创制研发提供新的思路。
Abstract:
As the most basic environmental factor in farmland ecosystem, light has an important effect on pesticide efficacy. Compared with traditional pesticides, photo-activated pesticides are favored by pesticide researchers because of their high efficiency, high resistance and good environmental compatibility. In this paper, the action model of photo-activated pesticides was reviewed. Photo-activated pesticides mainly produced free radicals and singlet oxygen, further reacted with oxygen to produce reactive oxygen species, which destroyed the structure and function of biofilm and organelle. In the absence of oxygen, photo-activated pesticides directly react with biomolecules to play the photo-activation toxicity, achieving the effect of insecticidal, bacteriostatic, herbicidal. In addition, the main structural types and biological activities of photo-activated pesticides were summarized and prospected. Enhancing the agricultural activity of photo-activated pesticides through the modification of chemical structure and systematically studying the mechanism of photo-activated pesticides at the level of cell metabolism can provide a new idea for the creation and development of new pesticides.

参考文献/References:

[1] 韩晓博, 郑英虹, 杨力明. 光敏剂在光动力治疗中的研究进展[J]. 上海大学学报(自然科学版), 2017, 23(2): 169-178 [2] MONRO S, COLON K L, YIN H, et al. Transition metal complexes and photodynamic therapy from a tumor- centered approach: challenges, opportunities, and highlights from the development of TLD1433[J]. Chemical Reviews, 2019, 119(2): 797-828. [3] 徐汉虹, 田永清. 光活化农药[M]. 北京: 化学工业出版社,2008: 72-76. [4] BERENBAUM M. Toxicity of a furanocoumarin to armyworms: a case of biosynthetic escape from insect herbivores[J]. Science, 1978, 201(4335): 532-534. [5] MASSIOT J,ROSILIO V,MAKKY A. Photo-triggerable liposomal drug delivery systems: from simple porphyrin insertion in the lipid bilayer towards supramolecular assemblies of lipid–porphyrin conjugates[J]. Journal of Materials Chemistry B,2019, 7(11): 1805-1823. [6] DICHIARA M, PREZZAVENTO O, MARRAZZO A, et al. Recent advances in drug discovery of phototherapeutic non-porphyrinic anticancer agents[J]. European Journal of Medicinal Chemistry, 2017, 142: 459-485. [7] 徐汉虹, 鞠荣. 植物源光活化毒素的研究与新农药开发[J]. 华南农业大学学报, 2003(4): 100-105. [8] SORIANO J, MORA-ESP? I, ALEA-REYES M E, et al. Cell death mechanisms in tumoral and non- tumoral human cell lines triggered by photodynamic treatments: apoptosis, necrosis and parthanatos[J]. Scientific Reports, 2017, 7: 41340. [9] KITAMURA N, KOHTANI S, NAKAGAKI R. Molecular aspects of furocoumarin reactions: photophysics, photochemistry, photobiology, and structural analysis[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2005, 6(2/3):168-185. [10] 俞建良, 郭孝孝, 熊结青. 5-氨基乙酰丙酸的应用研究进展[J]. 化学与生物工程, 2015, 32(9): 10-15. [11] 李素华, 庄文明, 朱孔杰, 等. 5-氨基乙酰丙酸在农业中的作用及应用[J]. 山东化工, 2016, 45(22): 82-83. [12] 陈罡, 管安琴, 万云龙, 等. 外源5-氨基乙酰丙酸(ALA)对盐胁迫下小型西瓜幼苗抗氧化酶活性的影响[J]. 江苏农业科学, 2016, 44(6): 252-255. [13] REBEIZ C A, REBEIZ C C, JUVIK J A. Photoactivated insecticides containing δ-aminolevulinic acid and/or its inducers and/or conversion enhancers: EP, 326835[P]. 1989-08-09. [14] KLOEK J, HENEGOUWEN B V. Prodrugs of 5-aminolevulinic acid for photodynamic therapy[J]. Photochemistry & Photobiology, 1996, 64(6):994-1000. [15] KOLOSSOV V L, REBEIZ C A. Chloroplast biogenesis 91: detection of δ-aminolevulinic acid esterases activity in higher plant and insect tissues[J]. Pesticide Biochemistry & Physiology, 2005, 83(1):9-20. [16] 金晓敏, 吴健. 卟啉类光敏药物的研究进展[J]. 中国药物化学杂志, 2002(1): 55-59. [17] BOLZONELLO L, ALBERTINI M, COLLINI E, et al. Delocalized triplet state in porphyrin J-aggregates revealed by EPR spectroscopy[J]. Physical Chemistry Chemical Physics, 2017, 19(40): 27173-27177. [18] JUNG H S, VERWILST P, SHARMA A, et al. Organic molecule-based photothermal agents: an expanding photothermal therapy universe[J]. Chemical Society Reviews, 2018, 47(7): 2280-2297. [19] TOSK J, SHERIF A, HALL R G,et al. Phototoxicity of hematoporphyrin derivative in larvae of Culex quinquefasciatus[J]. Proceedings and Papers of the Annual Conference of the California Mosquito and Vector Control Association (USA), 1986, 54:70-73. [20] 陈志龙, 张薇莉, 王红弟, 等. 二氢卟吩类光敏剂及其制备和应用: CN,101606933[P]. 2009-12-23. [21] 陈志龙, 张丹萍, 杨晓霞, 等. 5,10,15,20-四-(5-吗啉戊基)-二氢卟吩及其制备和在医农药领域的应用: CN, 101591340[P]. 2009-12-02. [22] 陈志龙, 张丹萍, 杨晓霞, 等. 一种烷基卟啉类化合物及其制备和在医农药领域的应用: CN, 101591341[P]. 2009-12-02. [23] 吴铁一, 屠铁城, 赵红卫, 等. 焦脱镁叶绿酸-a作为光活化农药的光活化机理研究[J]. 化学学报, 2006(1): 17-21. [24] 沈生荣, 于海宁, 王英龙, 等. 焦脱镁叶绿酸-a作为鳞翅目害虫杀虫剂的应用: CN, 101006781[P]. 2007-08-01. [25] 陈志龙, 杨晓霞, 杨君, 等. 一种叶绿素衍生物、其制备方法及在医农药领域的应用: CN, 101143866[P]. 2008-03-19. [26] 杨璟, 张国财, 胡春平, 等. 叶绿素降解产物二氢卟吩e6的合成及对尖孢镰刀菌的光敏抑制作用[J]. 吉林农业大学学报, 2018, 40(3): 270-275. [27] BURKARTS E, PHILLIPS R B, ROUSH D M, et al. 2-(2,2-Dihaloethenyl)-5-arylthiophene derivatives, their preparation, and acaricidal compositions containing them: US, 4782079(A) [P]. 1988-11-01. [28] BURKART S E, RODRIGUEZ C, ROUSH D M, et al. Preparation of acaricidal aryl(arylthien-2-yl)ethenes: US, 4792567(A) [P]. 1988-12-20. [29] MORAND P, ARNASON J T, PHILOGENE BERNARD J R, et al. Preparation of terthienyls and analogs as phototoxic insecticides: US, 5045563(A) [P]. 1991-09-03. [30] 徐汉虹, 胡林. 光活化杀虫剂氨基甲酸多联噻吩酯:CN, 1425295[P]. 2003-06-25. [31] WU R H, HU S, XU H H, et al. The synthesis and photolarvicidal activity of 2,5-diarylethynylthiophenes[J]. Journal of Photochemistry and Photobiology B: Biology, 2007, 88(2/3):180-184. [32] LI N, XU H H, LIU Z Y, et al. The synthesis and photoactivated cytotoxicity of 2-methyl-4-oxo-3-prop- 2-yn-1-ylcyclopent-2-en-1-yl-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate conjugated with α-terthienyl derivatives[J]. Journal of Photochemistry and PhotobiologyB: Biology, 2009, 96(3): 170-177. [33] 罗志刚, 刘正勇, 张广龙, 等. 三联噻吩-异噁唑、吡唑啉类化合物的合成与光活化性能研究[J]. 有机化学, 2014, 34(2): 392-397. [34] 袁李青, 徐汉虹, 杨文, 等. 噻吩N-芳基吡唑类化合物的合成及光活化活性研究[J]. 有机化学, 2011, 31(9): 1452-1459. [35] 孟志远, 王平, 陈小军, 等. 2,5-二苯基噻吩对稗草和马唐光活化抑制作用[J]. 西南农业学报, 2015, 28(5): 2066-2069. [36] SHAO G, JIANG D X, XU H H, et al. Synthesis and photoactivated insecticidal activity of tetraethynylsilanes[J]. Journal of Photochemistry and Photobiology B: Biology, 2010, 98(1):52-56. [37] LUTOMSKI K A, ROUSH D M, PHILLIPS R B. Photoactivated miticidal and insecticidal 5-ethynylthiazoles: US, 4889867(A)[P]. 1989-12- 26. [38] LUTOMSKI K A, ROUSH D M, PHILLIPS R B.Preparation of ethynylthiazoles as photodynamic insecticides and acaricides: US, 4788207(A) [P]. 1988-11-29. [39] SINGH S P, SEHGAL S. Synthesis and phototoxicity of some 2-(phenyl-or 2-or 3-thienyl)-4-substituted thiazoles[J]. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 1988, 27B(10), 941-943. [40] LUTOMSKI K A. Preparation of 5-(thien-2-yl) - 2-phenylthiazoles as photoactive insecticides, acaracides, and nematodes: US, 4908357(A)[P]. 1990-03-13. [41] LIU L G, XU Y F, QIAN X H,et al. Novel analogs of α-terthienyl, thienyl 1,3,4-thia(oxa)diazoles as potential photoactivated insecticides[J]. Synthesis and Bioactivity. Chinese Chemical Letters, 2004, 15(1): 7-10. [42] BACELLAR I, OLIVEIRA M C, DANTAS L, et al.Photosensitized membrane permeabilization requires contact-dependent reactions between photosensitizer and lipids[J]. Journal of the American Chemical Society, 2018, 140(30), 9606-9615. [43] 王红苹, 赵树铭. 亚甲蓝灭活血浆病毒的临床应用进展[J]. 中国输血杂志,2014,27(12): 1361-1363. [44] HEITZ J R. Development of photoactivated compounds as pesticides[M]. Europe: Harcourt Brace Jovanovich, 1987:1-21. [45] SOBOTTA L,SKUPIN-MRUGALSKA P, PISKORZ J, et al. Non-porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria[J]. Dyes and Pigments, 2019, 163: 337-355. [46] ARNASON T, SWAIN T, WAT C K, et al. Mosquito larvicidal activity of polyacetylenes from species in the Asteraceae[J]. Biochemical Systematics & Ecology, 1981, 9(1):63-68. [47] 徐汉虹, 赵善欢. 猪毛篙精油杀虫的有效成分[J]. 昆虫学报, 1994, 73(4): 411-416. [48] 李娜, 宋德寿, 徐汉虹, 等. 氯丙炔菊酯及其衍生物对斜纹夜蛾的细胞毒力[J]. 植物保护学报, 2010, 37(1): 49-54. [49] 张志义,张伟,张红雨,等. 含竹红菌甲素的新型生物农药杀虫剂及其制法: CN, 1183215[P]. 1998-06-03. [50] 张红雨, 刘为忠. 苝醌衍生物光敏生物杀菌剂及其制法: CN, 1389110[P]. 2003-01-08. [51] 赵井泉, 安红波, 谢杰, 等. 一种竹红菌乙素光活化农药:CN, 1481680[P]. 2004-03-17. [52] SANTEZI C, REINA B D, DOVIGO L N. Curcumin- mediated photodynamic therapy for the treatment of oral infections—a review[J]. Photodiagnosis and Photodynamic Therapy, 2018, 21:409-415. [53] JIANG Y, LEUNG A W, HUA H, et al. Photodynamic action of LED-activated curcumin against Staphylococcus aureus involving intracellular ROS increase and membrane damage[J]. International Journal of Photoenergy, http://clx.doi.org/10.1155/2014/637601. [54] 刘志昌, 王应红, 向清祥. 姜黄素取代嘧啶类衍生物及其制备方法与用途: CN, 101570515[P]. 2009-11-04. [55] 黄齐茂, 王司卫, 李清, 等. 姜黄素桥连卟啉光敏剂的合成及表征[J]. 高等学校化学学报, 2012, 33(4): 732-737. [56] KUSKE H, DERMATOL A. The skin-photosensitizing furocoumarins [J]. Cellular and Molecular Life Sciences, 1962, 18(4): 153-161. [57] ALVAREZ-MARTIN A, TRASHIN S, CUYKX M, et al. Photodegradation mechanisms and kinetics of Eosin-Y in oxic and anoxic conditions[J]. Dyes Pigments, 2017, 145:376-384. [58] GARAPATI C, CLARKE B, ZADORA S, et al. Development and characterization of erythrosine nanoparticles with potential for treating sinusitis using photodynamic therapy[J]. Photodiagnosis and Photodynamic Therapy, 2015, 12(1):9-18. [59] FRACALOSSI C, NAGATA J Y, PELLOSI D S, et al. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans[J]. Photodiagnosis and Photodynamic Therapy, 2016, 15:127-132. [60] LEITE H L A, CAVALCANTE S I A, SOUSA E M D, et al. Streptococcus mutans photoinactivation using a combination of a high potency photopolymerizer and rose bengal[J]. Photodiagnosis and Photodynamic Therapy, 2016, 15: 11-12.

相似文献/References:

[1]杨雯雯,聂文善,蒋祖燕,等.碘介导金包银核壳纳米粒子的合成及SERS应用[J].武汉工程大学学报,2017,39(01):31.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 006]
 YANG Wenwen,NIE Wenshan,JIANG Zuyan,et al.Fabrication of Silver@Gold Core-Shell NPs and Application as Functional SERS Substrate[J].Journal of Wuhan Institute of Technology,2017,39(01):31.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 006]

备注/Memo

备注/Memo:
收稿日期:2019-08-12 基金项目:海南省自然科学基金(2018CXTD335);国家自然科学基金(31860513) 作者简介:张筑宏,硕士研究生。E-mail:[email protected] *通讯作者:骆焱平,博士,教授。E-mail:[email protected] 引文格式:张筑宏,吴接呈,骆焱平. 光活化农药作用机理的研究进展[J]. 武汉工程大学学报,2020,42(1):18-27,112.
更新日期/Last Update: 2020-06-09