|本期目录/Table of Contents|

[1]费莹娜,黄龙庭,吴云韬*,等.非均匀噪声环境下基于矩阵补全的DOA估计方法[J].武汉工程大学学报,2020,42(01):97-101.[doi:10.19843/j.cnki.CN42-1779/TQ.201908027]
 FEI Yingna,HUANG Longting,WU Yuntao*,et al.Direction-of-Arrival Estimation Method Based on Matrix Completion in Presence of Non-Uniform Noise[J].Journal of Wuhan Institute of Technology,2020,42(01):97-101.[doi:10.19843/j.cnki.CN42-1779/TQ.201908027]
点击复制

非均匀噪声环境下基于矩阵补全的DOA估计方法(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年01期
页码:
97-101
栏目:
机电与信息工程
出版日期:
2021-01-25

文章信息/Info

Title:
Direction-of-Arrival Estimation Method Based on Matrix Completion in Presence of Non-Uniform Noise
文章编号:
1674 - 2869(2020)01 - 0097 - 05
作者:
费莹娜12黄龙庭3吴云韬*12胡超普12
1. 智能机器人湖北省重点实验室(武汉工程大学),湖北 武汉 430205;2. 武汉工程大学计算机科学与工程学院,湖北 武汉 430205;3. 武汉理工大学信息工程学院,湖北 武汉 430070
Author(s):
FEI Yingna12HUANG Longting3WU Yuntao*12HU Chaopu12
1. Hubei Key Laboratory of Intelligent Robot(Wuhan Institute of Technology),Wuhan 430205, China;2. School of Computer Science & Engineering,Wuhan Institute of Technology,Wuhan 430205, China;3. School of Information Engineering,Wuhan University of Technology,Wuhan 430070, China
关键词:
波达方向非均匀噪声矩阵补全最大似然交替投影
Keywords:
direction-of-arrival non-uniform noise matrix completion maximum likelihood alternating projection
分类号:
TN911.72
DOI:
10.19843/j.cnki.CN42-1779/TQ.201908027
文献标志码:
A
摘要:
针对传统的信号波达方向(DOA)估计算法无法适用于实际应用中非均匀噪声、数据不完整等情况的问题,提出了一种结合矩阵补全理论和最大似然交替投影算法的DOA估计方法。在背景噪声为非均匀噪声的情况下,该方法通过对只有部分元素已知的阵列协方差矩阵进行矩阵补全,将稀疏矩阵重构为无噪声协方差矩阵,然后利用最大似然交替投影算法实现对DOA的估计。实验仿真表明:该DOA估计方法能够有效恢复不完整数据并抑制非均匀噪声的影响,而且在低信噪比条件下,仍具有较好的DOA估计性能。
Abstract:
The traditional direction-of-arrival(DOA)estimation algorithm can not be directly utilized when the noise is non-uniform or the data are incomplete in practical applications. Thus, we proposed a DOA estimation method combining matrix completion theory and maximum likelihood alternating projection algorithm. When the spatially non-uniform noise was presented, the matrix completion method was first utilized to reconstruct a noiseless covariance matrix with the use of sparse matrix. Then the maximum likelihood alternating projection algorithm was applied to estimate DOA. Numerical simulations show that the proposed DOA estimation method can recover incomplete data effectively and suppress the influence of non-uniform noise. Additionally, the proposed method still has better DOA estimation performance than the other methods in low signal-to-noise ratio scenarios.

参考文献/References:

[1] TIAN Y, SHI H Y, XU H. DOA estimation in the presence of unknown non-uniform noise with coprime array [J]. Electronics Letters, 2017, 53(2):113-115. [2] 房云飞. 复杂场景下基于矩阵补全的DOA估计方法研究[D]. 大连:大连大学, 2018. [3] 吴云韬. 非平稳、色噪声环境下的参数估计方法研究[D]. 西安:西安电子科技大学, 2003. [4] 王洪雁,房云飞,裴炳南. 基于矩阵补全的二阶统计量重构DOA估计方法[J]. 电子与信息学报, 2018, 40(6):1383-1389. [5] LIAO B, CHAN S C, HUANG L, et al. Iterative methods for subspace and DOA estimation in nonuniform noise [J]. IEEE Transactions on Signal Processing, 2016,64(12):3008-3020.[6] MA R, BARZIGAR N, ROOZGARD A, et al. Decomposition approach for low-rank matrix completion and its applications [J]. IEEE Transactions on Signal Processing, 2014,62 (7): 1671-1683. [7] CAND?S E J, BENJAMIN R. Exact matrix completion via convex optimization [J]. Foundations of Computational Mathematics, 2009, 9(6):717-772. [8] CAND?S E J, PLAN Y. Matrix completion with noise [J]. Proceedings of the IEEE, 2010, 98(6):925-936. [9] 陈蕾,陈松灿. 矩阵补全模型及其算法研究综述[J]. 软件学报, 2017, 28(6):1547-1564. [10] RANI M, DHOK S B, DESHMUKH R B. A Systematic review of compressive sensing: concepts, implementations and applications [J]. IEEE Access, 2018, 6:4875-4894. [11] HU Y, YU X Q. Research on the application of compressive sensing theory in DOA estimation [C]//2017 IEEE International Conference on Signal Processing. Xiamen: IEEE, 2017: 1-5. [12] LIAO B, GUO C T, HUANG L, et al. Matrix completion based direction of arrival estimation in nonuniform noise [C]//2016 IEEE International Conference on Digital Signal Processing. Beijing: IEEE, 2016: 66-69. [13] OLLIER V, KORSO M N E, BOYER R, et al. Joint ML calibration and DOA estimation with separated arrays [C]// 2016 IEEE International Conference on Acoustics. Shanghai: IEEE, 2016: 2996-3000. [14] FANG W H, LEE Y C, CHEN Y T. Maximum likelihood 2-D DOA estimation via signal separation and importance sampling [J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15:746-749. [15] BAZZI A, SLOCK D T M, MEILHAC L. On a mutual coupling agnostic maximum likelihood angle of arrival estimator by alternating projection [C]// 2016 IEEE Global Conference on Signal and Information Processing. Washington: IEEE, 2016: 1393-1397. [16] OTTERSTEN B, VIBERG M, KAILATH T. Performance analysis of the total least squares ESPRIT algorithm [J]. IEEE Transactions on Signal Processing, 1991, 39(5):1122-1135.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-08-30基金项目:国家自然科学基金 (61771353);武汉工程大学第十届研究生教育创新基金(CX2018201)作者简介:费莹娜,硕士研究生。E-mail:[email protected]*通讯作者:吴云韬,博士,教授。E-mail:[email protected]引文格式:费莹娜,黄龙庭,吴云韬,等. 非均匀噪声环境下基于矩阵补全的DOA估计方法[J]. 武汉工程大学学报,2020,42(1):97-101.
更新日期/Last Update: 2020-06-09