[1] SUNG M H, PARK C, KIM C J, et al. Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications[J]. Chemical Record, 2010,5(6):352-366. [2] LIU F L, HUANG X X, HAN L F, et al. Improved druggability of gambogic acid using core-shell nanoparticles[J]. Biomaterials Science,2019,7(3):1028-1042. [3] DAI S L, FENG Y C, LI S Y, et al. Stereocomplexation assisted assembly of poly(gamma-glutamic acid)- graft-polylactide nano-micelles and their efficacy as anticancer drug carrier[J]. Anti-cancer Agents in Medicinal Chemistry, 2018,18(2):302-311. [4] LUO Z T, GUO Y, LIU J D, et al. Microbial synthesis of poly-gamma-glutamic acid: current progress, challenges, and future perspectives[J]. Biotechnol Biofuels, 2016(9):134. [5] OGATA F, NAGAI N , KAWASAKI N. Adsorption capability of cationic dyes (methylene blue and crystal violet) onto poly-gamma-glutamic acid[J]. Chemical and Pharmaceutical Bulletin (Tokyo), 2017,65(3):268-275. [6] EMAN Z G. Cryoprotection of probiotic bacteria with poly-gamma-glutamic acid produced by Bacillus subtilis and Bacillus licheniformis[J]. Genetic Engineering and Biotechnology Journal, 2016,14(2):269-279. [7] HSUEH Y H, HUANG K Y, KUNENE S C, et al. Poly-gamma-glutamic acid synthesis, gene regulation, phylogenetic relationships, and role in fermentation[J]. International Journal of Molecular Sciences, 2017,18(12):2644. [8] SAKAMOTO S, KAWASE Y. Adsorption capacities of poly-gamma-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters[J]. Journal of Environmental Radioactivity, 2016,165:151-158. [9] LEI P, XU Z Q, DING Y, et al. Effect of poly(γ-glutamic acid) on the physiological responses and calcium signaling of rape seedlings (brassica napus L. ) under cold stress[J]. Journal of Agricultural and Food Chemistry, 2015,63(48):10399-10406. [10] GARDNER J M, TROY F A. Chemistry and biosynthesis of the poly(γ-d-glutamyl) capsule in bacillus licheniformis[J]. Journal of Biological Chemistry, 1973,248(1):316-324. [11] 吉美萍, 庞艳波, 付丽丽, 等. γ-聚谷氨酸基因工程研究进展与展望[J]. 中国生物工程杂志, 2016,36(6):107-118. [12] ZENG W, CHEN G G, WU H, et al. Improvement of Bacillus subtilis for poly-gamma-glutamic acid production by genome shuffling[J]. Microbial Biotechnology, 2016,9(6):824-833. [13] 曹小红, 哈志瑞, 王春玲, 等. 响应面法对Bacillus natto TK-2产聚-γ-谷氨酸(γ-PGA)发酵培养基的优化[J]. 食品与发酵工业, 2008,34(1):24-27. [14] 汪少华. 聚γ-谷氨酸增效复合肥产业化开发及应用前景[J]. 磷肥与复肥, 2009,24(6):52-54. [15] 张世根, 宋杰, 李敏, 等. 肥料增效剂γ-聚谷氨酸的生产与应用[J]. 农产品加工(学刊), 2010(8):60-61. [16] JIANG Y, LIU L M, LUO G F, et al. Effect of γ-PGA coated urea on N-release rate and tomato growth[J]. Wuhan University Journal of Natural Sciences, 2014,19(4):335-340. [17] 孙刚忠. 聚γ-谷氨酸在小白菜上的应用效果及其作用机理[D]. 武汉:华中农业大学, 2012. [18] 刘端义, 梅金先, 张旅峰, 等. 聚-γ-谷氨酸及其增效肥在水稻上的应用[J]. 湖北农业科学, 2010,49(10):2390-2394. [19] 谢金长, 颜福花, 舒宁, 等. 聚-γ-谷氨酸对‘无籽椪柑’和‘翡翠柚’品质的影响[J]. 亚热带农业研究, 2016,12(4):236-241. [20] 黄巧义, 唐拴虎, 李苹, 等. 包膜材料γ-聚谷氨酸对菜心的农学效应[J]. 植物营养与肥料学报, 2016,22(6):1645-1654. [21] ZHANG L, YANG X M, GAO D C, et al. Effects of poly-gamma-glutamic acid (gamma-PGA) on plant growth and its distribution in a controlled plant-soil system[J]. Scientific Reports, 2017,7(1):6090. [22] 张庆庆, 金鑫强, 陈剑翔, 等. 发酵液中γ-聚谷氨酸含量快速测定方法研究[J]. 食品工业科技, 2012,33(19):294-296.
[1]田 莉,卢轶男,朱 建,等.产纳豆激酶的枯草芽孢杆菌基因工程菌发酵条件的响应面优化[J].武汉工程大学学报,2018,40(06):619.[doi:10. 3969/j. issn. 1674?2869. 2018. 06. 007]
TIAN Li,LU Yinan,ZHU Jian,et al.Optimization of Fermentation Conditions for Nattokinase Production by Genetically Engineered Bacillus Subtilis Using Response Surface Methodology[J].Journal of Wuhan Institute of Technology,2018,40(02):619.[doi:10. 3969/j. issn. 1674?2869. 2018. 06. 007]
[2]张旭松,高 鹏,黄天悦,等.一株产ε-聚赖氨酸菌株的鉴定和发酵优化[J].武汉工程大学学报,2021,43(01):30.[doi:10.19843/j.cnki.CN42-1779/TQ. 202004004]
ZHANG Xusong,GAO Peng,HUANG Tianyue,et al.Identification and Fermentation Optimization of One Strain Producing-ε-Polylysine[J].Journal of Wuhan Institute of Technology,2021,43(02):30.[doi:10.19843/j.cnki.CN42-1779/TQ. 202004004]