[1] CHEN X F, ZHANG J S , FU X Z , et al. Fe-g-C3N4- catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light [J]. Journal of the American Chemical Society,2009,131(33):11658-11659. [2] YANG Y,TANG Z,ZHOU B J,et al. In situ no-slot joint integration of half-metallic C(CN)3 cocatalyst into g-C3N4 scaffold:an absolute metal-free in-plane heterosystem for efficient and selective photoconversion of CO2 into CO[J]. Applied Catalysis B:Environmental,2020,262:118470(1)-118470(12). [3] KIM C, CHO M K, PARK K, et al. Ternary hybrid aerogels of g-C3N4/α-Fe2O3 on a 3D graphene network:an efficient and recyclable Z-scheme photocatalyst [J]. ChemPlusChem,2020,85(1):169-175. [4] LI Y H, GU M I, SHI T, et al. Carbon vacancy in C3N4 nanotube: electronic structure,photocatalysis mechanism and highly enhanced activity [J]. Applied Catalysis B: Environmental,2020,262:118281(1)- 118281(12). [5] TETER D M, HEMLEY R J. Low-compressibility carbon nitrides [J]. Science,1996,271(5245):53-55. [6] GROENEWOLT M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices [J]. Advanced Materials,2005,17(14):1789-1792. [7] THOMAS A, FISCHER A, GOET F,et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts [J]. Journal of Materials Chemistry,2008,18(41):4893-4908. [8] MATSUMOTO S,XIE E Q,IZUMI F. On the validity of the formation of crystalline carbon nitrides,C3N4 [J]. Diamond and Related Materials,1999,8(7):1175-1182. [9] GOETTMANN F,FISCHER A,ANTONIETTI M,et al. Metal-free catalysis of sustainable Friedel-Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds [J]. Chemical Communications,2006,42(43):4530-4532. [10] WANG X C, MEADA K, THOMAS A, et al. A metal- free polymeric photocatalyst for hydrogen production from water under visiblelight [J]. Nature Materials,2008,8(1):76-80. [11] GUO Q X,YANG Q,YI C Q,et al. Synthesis of carbon nitrides with graphite-like or onion-like lamellar structures via a solvent-free route at low temperatures [J]. Carbon,2005,43(7):1386-1391. [12] 张永平,顾有松,常香荣,等. 超硬薄膜β-C3N4的制备和表征[J]. 功能材料,2000,31(2):172-174. [13] GU Q, LIAO Y S, YIN L S, et al. Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability [J]. Applied Catalysis B: Environmental,2015,165:503-510. [14] TONDA S,KUMAR S,KANDULA S,et al. Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight [J]. Journal of Materials Chemistry A,2014,2(19):6772-6780. [15] LIU G, NIU P, SUN C H, et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4 [J]. Journal of the American Chemical Society,2010,132(33):11642-11648. [16] KUMAR S,TONDA S,KUMAR B,et al. Synthesis of magnetically separable and recyclable g-C3N4-Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation [J]. The Journal of Physical Chemistry C,2013,117(49):26135-26143. [17] YUAN B,WEI J X,HU T J,et al. Simple synthesis of U-g-C3N4/rGO hybrid catalyst for the photocatalytic degradation of rhodamine B [J]. Chinese Journal of Catalysis,2015,36(7):1009-1016. [18] SUN J H, ZHANG J S, ZHANG M W, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communi- cations,2012,3(1):1139(1)-1139(7). [19] ONG W J,TAN L L,NG Y H,et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability [J]. Chemical Reviews,2016,116(12):7159-7329. [20] ZHENG Y,LIN L H,YEH J,et al. Helical graphitic carbon nitrides with photocatalytic and optical activities [J]. Angewandte Chemie(International Edition),2014,53(44):11926-11930. [21] YANG S B,GONG Y J,ZHANG J S,et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light [J]. Advanced Materials,2013,25(17):2452-2456. [22] 颜廷楠. 石墨相氮化碳的改性与应用[D]. 湘潭:湘潭大学,2016. [23] FUJISHIMA A,HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238(5358):37-38. [24] HISATOMI T, KUBOTA J, DOMEN K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting [J]. Chemical Society Reviews,2014,43(22):752-7535. [25] 陈秀芳. 石墨相氮化碳的制备、表征及其光催化性能研究[D]. 福州:福州大学,2011. [26] 任亚军. β-FeOOH制备及其还原过程研究[D]. 合肥:安徽大学,2015. [27] YAO Y, SUN M X, YUAN X J, et al. One-step hydrothermal synthesis of N/Ti3+ co-doping multiphasic TiO2/BiOBr heterojunctions towards enhanced sonocatalytic performance [J]. Ultrasonics Sonochemistry,2018,49:69-78. [28] LI J T,SUN M X,HE G Y,et al. Efficient and green synthesis of bis(indolyl)methanes catalyzed by ABS in aqueous media under ultrasound irradiation [J]. Ultrasonics Sonochemistry,2011,18:412-414. [29] LI J T, SUN M X, YIN Y. Ultrasound promoted efficient method for the cleavage of 3-aryl-2,3- epoxyl-1-phenyl-1-propanone with indole [J]. Ultrasonics Sonochemistry,2010,17:359-362. [30] ZARGAZIA M,ENTEZARI M H. Sonochemical versus hydrothermal synthesis of bismuth tungstate nanostructures: photocatalytic,sonocatalytic and sonophotocatalytic activities [J]. Ultrasonics Sonochemistry,2019,51:1-11. [31] 陈俊宇,姜贵民,滕媛,等. (Fe,N)共掺杂TiO2红外光谱的电负性原理研究(英文)[J]. 光谱学与光谱分析,2017,37(7):2305-2310. [32] 张俊,孙杰,孟锦宏,等. 针状α-FeOOH的液相制备研究[J]. 沈阳理工大学学报,2007,26(1):83-86,61. [33] 党聪哲,李一兵,赵旭. 石墨相氮化碳的制备及光催化降解罗丹明B[J]. 环境工程学报,2018,12(2):427-433. [34] PENG Y ,LU B Z, CHEN L M, et al. Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets [J]. Journal of Materials Chemistry A,2017,5(34):18261-18269.
[1]安盼龙,赵瑞娟,许丽萍,等.内建电场对纳构半导体功函数的调制[J].武汉工程大学学报,2011,(04):50.[doi:10.3969/j.issn.16742869.2011.04.013]
AN Pan long,ZHAO Rui juan,XU Li ping,et al.Modulation on work function of nanosemiconductor material by builtin electric field[J].Journal of Wuhan Institute of Technology,2011,(02):50.[doi:10.3969/j.issn.16742869.2011.04.013]
[2]邹 菁,彭俊敏,柳子涵,等.硫化锌量子点/类石墨相氮化碳异质结的制备及应用[J].武汉工程大学学报,2015,37(04):12.[doi:10. 3969/j. issn. 1674—2869. 2015. 04. 003]
,,et al.Synthesis and application of zinc sulfide quantum dots/graphite-like carbon nitride heterojunction[J].Journal of Wuhan Institute of Technology,2015,37(02):12.[doi:10. 3969/j. issn. 1674—2869. 2015. 04. 003]
[3]邓文明,张 胜,江吉周,等.CuS nanotube/g-C3N4异质结的合成及光催化性能[J].武汉工程大学学报,2021,43(01):65.[doi:10.19843/j.cnki.CN42-1779/TQ.202002017]
DENG Wenming,ZHANG Sheng,JIANG Jizhou,et al.Synthesis and Photocatalytic Performances of CuS Nanotube/g-C3N4 Heterojunction[J].Journal of Wuhan Institute of Technology,2021,43(02):65.[doi:10.19843/j.cnki.CN42-1779/TQ.202002017]
[4]王雪燕,袁嘉泽,何禄英*.C空位协同g-C3N4/BiOCl异质结对亚甲基蓝光催化降解性能的研究[J].武汉工程大学学报,2024,46(05):490.[doi:10.19843/j.cnki.CN42-1779/TQ.202311012]
WANG Xueyan,YUAN Jiaze,HE Luying*.Photocatalytic degradation of methylene blue by C-vacancy andg-C3N4/BiOCl heterojunction [J].Journal of Wuhan Institute of Technology,2024,46(02):490.[doi:10.19843/j.cnki.CN42-1779/TQ.202311012]