|本期目录/Table of Contents|

[1]方俊雄,邓文明,江吉周,等.β-FeOOH/U-g-C3N4异质结的制备及光电催化析氢性能[J].武汉工程大学学报,2020,42(02):165-171,206.[doi:10.19843/j.cnki.CN42-1779/TQ.202001021]
 FANG Junxiong,DENG Wenming,JIANG Jizhou,et al.Preparation of β-FeOOH/U-g-C3N4 Heterojunction and Their Performances in Photoelectrocatalytic Hydrogen Evolution Reaction[J].Journal of Wuhan Institute of Technology,2020,42(02):165-171,206.[doi:10.19843/j.cnki.CN42-1779/TQ.202001021]
点击复制

β-FeOOH/U-g-C3N4异质结的制备及光电催化析氢性能(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年02期
页码:
165-171,206
栏目:
材料科学与工程
出版日期:
2021-01-26

文章信息/Info

Title:
Preparation of β-FeOOH/U-g-C3N4 Heterojunction and Their Performances in Photoelectrocatalytic Hydrogen Evolution Reaction
文章编号:
1674 - 2869(2020)02 - 0165 - 07
作者:
方俊雄邓文明江吉周邹 菁*
武汉工程大学化学与环境工程学院,湖北 武汉 430205
Author(s):
FANG JunxiongDENG WenmingJIANG JizhouZOU Jing*
School of Chemistry and Environmental Engineering,Wuhan Institute of Technology,Wuhan 430205, China
关键词:
β-FeOOH/U-g-C3N4异质结光电催化活性析氢反应超声波法
Keywords:
β - FeOOH/U - g - C3N4 heterojunctionphotoelectrocatalyticactivityhydrogen evolution reaction(HER)ultrasonic method
分类号:
O614.81
DOI:
10.19843/j.cnki.CN42-1779/TQ.202001021
文献标志码:
A
摘要:
通过两步合成法合成了新型的β-FeOOH/U-g-C3N4异质结光催化剂。首先通过热聚合制备超薄g-C3N4(U-g-C3N4)样品,然后通过超声技术以U-g-C3N4和FeCl3·6H2O为前驱体制备β-FeOOH/U-g-C3N4异质结。系统研究了铁盐种类、前驱体质量比、pH值和超声时间等合成条件对β-FeOOH/U-g-C3N4异质结光催化析氢性能的影响。具有最佳析氢性能的β-FeOOH/U-g-C3N4异质结的比表面积为47.7 m2·g-1,是U-g-C3N4的3倍;与U-g-C3N4相比,β-FeOOH/U-g-C3N4异质结的能带隙从2.70 eV降低到2.02 eV,吸收边带从472 nm红移至583 nm。另外,光催化制氢反应中β-FeOOH/U-g-C3N4异质结的Tafel斜率为87.2 mV·dec-1,低于U-g-C3N4的147.4 mV·dec-1和β-FeOOH的156.8 mV·dec-1。结果表明复合产物较U-g-C3N4具有更高的光电催化活性。光电催化活性提高应归因于β-FeOOH和U-g-C3N4形成了异质结,界面电子通过碳物质可以更高效地转移,同时产生了较多的活性反应位点。因此,通过超声法将β-FeOOH和U-g-C3N4复合是一种制备较高光电催化活性且稳定的光电催化材料的有效策略之一。
Abstract:
A new type of β-FeOOH/U-g-C3N4 heterojunction photocatalyst was synthesized by two-step synthesis method,where the ultra-thin g-C3N4(U-g-C3N4) sample was firstly prepared with thermal polymerization,followed by an ultrasonic technique to fabricate the β-FeOOH/U-g-C3N4 heterojunction with U-g-C3N4 and FeCl3·6H2O as precursors. The effects of synthesis conditions such as the type of iron salt,mass ratio of the precursors,pH and ultrasonic time on the photocatalytic performance of β-FeOOH/U-g-C3N4 heterojunction were systematically investigated. The β-FeOOH/U-g-C3N4 heterojunction with best hydrogen evolution performance showed a specific surface area of 47.7 m2·g-1,which was three times that of U-g-C3N4. Compared with U-g-C3N4,the band gap of β-FeOOH/U-g-C3N4 heterojunction reduced from 2.70 to 2.02 eV and the absorption edge redshifted from 472 to 583 nm. Moreover,the Tafel slope of β-FeOOH/U-g-C3N4 heterojunction in the photocatalytic hydrogen evolution reaction was 87.2 mV·dec-1,being lower than 147.4 mV·dec-1 of U-g-C3N4 and 156.8 mV·dec-1 of β-FeOOH. These results show that the β-FeOOH/U-g-C3N4 nanocomposites display a higher photoelectrocatalytic activity than U-g-C3N4. The increased photoelectrocatalytic activity is attributed to the formation of heterojunctions between β-FeOOH and U-g-C3N4. Electrons at the interface can be transferred more efficiently through carbon materials,and more active reaction sites are generated. Therefore,the combination of U - g - C3N4 and β - FeOOH is one of the effective strategies to improve its stability and photoelectrocatalytic activity.

参考文献/References:

[1] CHEN X F, ZHANG J S , FU X Z , et al. Fe-g-C3N4- catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light [J]. Journal of the American Chemical Society,2009,131(33):11658-11659. [2] YANG Y,TANG Z,ZHOU B J,et al. In situ no-slot joint integration of half-metallic C(CN)3 cocatalyst into g-C3N4 scaffold:an absolute metal-free in-plane heterosystem for efficient and selective photoconversion of CO2 into CO[J]. Applied Catalysis B:Environmental,2020,262:118470(1)-118470(12). [3] KIM C, CHO M K, PARK K, et al. Ternary hybrid aerogels of g-C3N4/α-Fe2O3 on a 3D graphene network:an efficient and recyclable Z-scheme photocatalyst [J]. ChemPlusChem,2020,85(1):169-175. [4] LI Y H, GU M I, SHI T, et al. Carbon vacancy in C3N4 nanotube: electronic structure,photocatalysis mechanism and highly enhanced activity [J]. Applied Catalysis B: Environmental,2020,262:118281(1)- 118281(12). [5] TETER D M, HEMLEY R J. Low-compressibility carbon nitrides [J]. Science,1996,271(5245):53-55. [6] GROENEWOLT M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices [J]. Advanced Materials,2005,17(14):1789-1792. [7] THOMAS A, FISCHER A, GOET F,et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts [J]. Journal of Materials Chemistry,2008,18(41):4893-4908. [8] MATSUMOTO S,XIE E Q,IZUMI F. On the validity of the formation of crystalline carbon nitrides,C3N4 [J]. Diamond and Related Materials,1999,8(7):1175-1182. [9] GOETTMANN F,FISCHER A,ANTONIETTI M,et al. Metal-free catalysis of sustainable Friedel-Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds [J]. Chemical Communications,2006,42(43):4530-4532. [10] WANG X C, MEADA K, THOMAS A, et al. A metal- free polymeric photocatalyst for hydrogen production from water under visiblelight [J]. Nature Materials,2008,8(1):76-80. [11] GUO Q X,YANG Q,YI C Q,et al. Synthesis of carbon nitrides with graphite-like or onion-like lamellar structures via a solvent-free route at low temperatures [J]. Carbon,2005,43(7):1386-1391. [12] 张永平,顾有松,常香荣,等. 超硬薄膜β-C3N4的制备和表征[J]. 功能材料,2000,31(2):172-174. [13] GU Q, LIAO Y S, YIN L S, et al. Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability [J]. Applied Catalysis B: Environmental,2015,165:503-510. [14] TONDA S,KUMAR S,KANDULA S,et al. Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight [J]. Journal of Materials Chemistry A,2014,2(19):6772-6780. [15] LIU G, NIU P, SUN C H, et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4 [J]. Journal of the American Chemical Society,2010,132(33):11642-11648. [16] KUMAR S,TONDA S,KUMAR B,et al. Synthesis of magnetically separable and recyclable g-C3N4-Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation [J]. The Journal of Physical Chemistry C,2013,117(49):26135-26143. [17] YUAN B,WEI J X,HU T J,et al. Simple synthesis of U-g-C3N4/rGO hybrid catalyst for the photocatalytic degradation of rhodamine B [J]. Chinese Journal of Catalysis,2015,36(7):1009-1016. [18] SUN J H, ZHANG J S, ZHANG M W, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communi- cations,2012,3(1):1139(1)-1139(7). [19] ONG W J,TAN L L,NG Y H,et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability [J]. Chemical Reviews,2016,116(12):7159-7329. [20] ZHENG Y,LIN L H,YEH J,et al. Helical graphitic carbon nitrides with photocatalytic and optical activities [J]. Angewandte Chemie(International Edition),2014,53(44):11926-11930. [21] YANG S B,GONG Y J,ZHANG J S,et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light [J]. Advanced Materials,2013,25(17):2452-2456. [22] 颜廷楠. 石墨相氮化碳的改性与应用[D]. 湘潭:湘潭大学,2016. [23] FUJISHIMA A,HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238(5358):37-38. [24] HISATOMI T, KUBOTA J, DOMEN K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting [J]. Chemical Society Reviews,2014,43(22):752-7535. [25] 陈秀芳. 石墨相氮化碳的制备、表征及其光催化性能研究[D]. 福州:福州大学,2011. [26] 任亚军. β-FeOOH制备及其还原过程研究[D]. 合肥:安徽大学,2015. [27] YAO Y, SUN M X, YUAN X J, et al. One-step hydrothermal synthesis of N/Ti3+ co-doping multiphasic TiO2/BiOBr heterojunctions towards enhanced sonocatalytic performance [J]. Ultrasonics Sonochemistry,2018,49:69-78. [28] LI J T,SUN M X,HE G Y,et al. Efficient and green synthesis of bis(indolyl)methanes catalyzed by ABS in aqueous media under ultrasound irradiation [J]. Ultrasonics Sonochemistry,2011,18:412-414. [29] LI J T, SUN M X, YIN Y. Ultrasound promoted efficient method for the cleavage of 3-aryl-2,3- epoxyl-1-phenyl-1-propanone with indole [J]. Ultrasonics Sonochemistry,2010,17:359-362. [30] ZARGAZIA M,ENTEZARI M H. Sonochemical versus hydrothermal synthesis of bismuth tungstate nanostructures: photocatalytic,sonocatalytic and sonophotocatalytic activities [J]. Ultrasonics Sonochemistry,2019,51:1-11. [31] 陈俊宇,姜贵民,滕媛,等. (Fe,N)共掺杂TiO2红外光谱的电负性原理研究(英文)[J]. 光谱学与光谱分析,2017,37(7):2305-2310. [32] 张俊,孙杰,孟锦宏,等. 针状α-FeOOH的液相制备研究[J]. 沈阳理工大学学报,2007,26(1):83-86,61. [33] 党聪哲,李一兵,赵旭. 石墨相氮化碳的制备及光催化降解罗丹明B[J]. 环境工程学报,2018,12(2):427-433. [34] PENG Y ,LU B Z, CHEN L M, et al. Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets [J]. Journal of Materials Chemistry A,2017,5(34):18261-18269.

相似文献/References:

[1]安盼龙,赵瑞娟,许丽萍,等.内建电场对纳构半导体功函数的调制[J].武汉工程大学学报,2011,(04):50.[doi:10.3969/j.issn.16742869.2011.04.013]
 AN Pan long,ZHAO Rui juan,XU Li ping,et al.Modulation on work function of nanosemiconductor material by builtin electric field[J].Journal of Wuhan Institute of Technology,2011,(02):50.[doi:10.3969/j.issn.16742869.2011.04.013]
[2]邹 菁,彭俊敏,柳子涵,等.硫化锌量子点/类石墨相氮化碳异质结的制备及应用[J].武汉工程大学学报,2015,37(04):12.[doi:10. 3969/j. issn. 1674—2869. 2015. 04. 003]
 ,,et al.Synthesis and application of zinc sulfide quantum dots/graphite-like carbon nitride heterojunction[J].Journal of Wuhan Institute of Technology,2015,37(02):12.[doi:10. 3969/j. issn. 1674—2869. 2015. 04. 003]
[3]邓文明,张 胜,江吉周,等.CuS nanotube/g-C3N4异质结的合成及光催化性能[J].武汉工程大学学报,2021,43(01):65.[doi:10.19843/j.cnki.CN42-1779/TQ.202002017]
 DENG Wenming,ZHANG Sheng,JIANG Jizhou,et al.Synthesis and Photocatalytic Performances of CuS Nanotube/g-C3N4 Heterojunction[J].Journal of Wuhan Institute of Technology,2021,43(02):65.[doi:10.19843/j.cnki.CN42-1779/TQ.202002017]
[4]王雪燕,袁嘉泽,何禄英*.C空位协同g-C3N4/BiOCl异质结对亚甲基蓝光催化降解性能的研究[J].武汉工程大学学报,2024,46(05):490.[doi:10.19843/j.cnki.CN42-1779/TQ.202311012]
 WANG Xueyan,YUAN Jiaze,HE Luying*.Photocatalytic degradation of methylene blue by C-vacancy andg-C3N4/BiOCl heterojunction [J].Journal of Wuhan Institute of Technology,2024,46(02):490.[doi:10.19843/j.cnki.CN42-1779/TQ.202311012]

备注/Memo

备注/Memo:
收稿日期:2020-01-27基金项目:国家自然科学基金(21471122);武汉工程大学第十一届研究生教育创新基金(CX2019193)作者简介:方俊雄,硕士研究生。E-mail:[email protected]*通讯作者:邹 菁,博士,教授,博士研究生导师。E-mail: [email protected]引文格式:方俊雄,邓文明,江吉周,等. β-FeOOH/U-g-C3N4异质结的制备及光电催化析氢性能[J]. 武汉工程大学学报,2020,42(2):165-171,206.
更新日期/Last Update: 2020-06-19