[1] SEILER J P. Pentachlorophenol [J]. Mutation Research/ Reviews in Genetic Toxicology,1991,257(1):27-47. [2] 梁倩,朱晓华,吴光红. 五氯苯酚及其钠盐在渔业产品中的残留与检测方法的研究进展[J]. 中国渔业质量与标准,2012,2(1):71-75. [3] ZHENG L, LIU Z T, YAN Z G, et al. pH-dependent ecological risk assessment of pentachlorophenol in Taihu Lake and Liaohe River [J]. Ecotoxicology and Environmental Safety,2017,135:216-224. [4] KYLIN H, SVENSSON T, JENSEN S, et al. The trans- continental distributions of pentachlorophenol and pentachloroanisole in pine needles indicate separate origins [J]. Environmental Pollution,2017,229:688-695. [5] 李梦耀,杨婧晖,钱会. 五氯苯酚测定方法研究进展[J]. 分析测试技术与仪器,2007,13(4):285-290. [6] 杨秋红,程小艳,杨坪,等. 固相萃取-高效液相色谱串联质谱法同时检测地表水中的2,4-二氯酚、2,4,6-三氯酚和五氯酚[J]. 分析化学,2011,39(8):1208-1212. [7] ZHU B Z, SHAN G Q. Potential mechanism for pentachlorophenol-induced carcinogenicity:a novel mechanism for metal-independent production of hydroxyl radicals [J]. Chemical Research in Toxicology,2009,22(6):969-977. [8] VERBRUGGE L A, KAHN L, MORTON J M. Pentachlorophenol,polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans in surface soil surrounding pentachlorophenol-treated utility poles on the Kenai National Wildlife Refuge,Alaska USA [J]. Environmental Science and Pollution Research,2018,25(19):19187-19195. [9] ZHANG C,LI D, GE T T, et al. 2,4-Dichlorophenol induces feminization of zebrafish (Danio rerio) via DNA methylation [J]. Science of the Total Environment,2020,708:135084(1)-135084(10). [10] LI H, JIANG Y J, WANG S L, et al. Bacterial networks mediate pentachlorophenol dechlorination across land-use types with citrate addition [J]. Journal of Hazardous Materials,2020,384:121295(1)- 121295(9). [11] ALI M B,BARRAS A,ADDAD A,et al. Co2SnO4 nanoparticles as a high performance catalyst for oxidative degradation of rhodamine B dye and pentachlorophenol by activation of peroxymonosulfate [J]. Physical Chemistry Chemical Physics,2017,19(9):6569-6578. [12] GREMAUD E, TURESKY R J. Rapid analytical methods to measure pentachlorophenol in wood [J]. Journal of Agricultural and Food Chemistry,1997,45(4):1229-1233. [13] 陈彦宏,黄松,陈穗,等. 五氯酚及其钠盐的样品前处理和分析检测技术研究进展[J]. 食品安全质量检测学报,2019,10(14):4465-4473. [14] WEN J Q, XIE J, CHEN X B, et al. A review on g-C3N4-based photocatalysts [J]. Applied Surface Science,2017,391:72-123. [15] 彭小明,罗文栋,胡锋平,等. 石墨类氮化碳改性方法的研究进展[J]. 水处理技术,2019,45(12):1-6,12. [16] ZHANG S,GU P C,MA R,et al. Recent developments in fabrication and structure regulation of visible- light-driven g-C3N4-based photocatalysts towards water purification:a critical review [J]. Catalysis Today,2019,335:65-77. [17] CAO Y, WANG L N, WANG C Y, et al. Sensitive detection of glyphosate based on a Cu-BTC MOF/g-C3N4 nanosheet photoelectrochemical sensor [J]. Electrochimica Acta,2019,317:341-347. [18] YADAV R M, KUMAR R, ALIYAN A, et al. Facile synthesis of highly fluorescent free-standing films comprising of graphitic carbon nitride (g-C3N4) nanolayers [J]. New Journal of Chemistry,2020,44(6):2644-2651. [19] ZHOU X, ZOU J, ZHANG S, et al. Preparation and application of g-C3N4-ZnS-DNA nanocomposite with enhanced electrocatalytic activity [J]. Chinese Journal of Catalysis,2017,38(2):287-295. [20] XIA B Y, YUAN Q M, CHU M F, et al. Directly one-step electrochemical synthesis of graphitic carbon nitride/graphene hybrid and its application in ultrasensitive electrochemiluminescence sensing of pentachlorophenol [J]. Sensors and Actuators B:Chemical,2016,228:565-572. [21] SUN Y J,JIANG J Z,LIU Y,et al. A facile one-pot preparation of Co3O4/g-C3N4 heterojunctions with excellent electrocatalytic activity for the detection of environmental phenolic hormones[J]. Applied Surface Science,2018,430:362-370. [22] ZOU J, WU S L, LIU Y, et al. An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection [J]. Carbon,2018,130:652-663. [23] 李敏,李海岩,孙发民,等. 高比表面积石墨化氮化碳的制备及应用[J]. 石油学报(石油加工),2014,30(1):158-168. [24] CUI J G, QI D W, WANG X. Research on the techniques of ultrasound-assisted liquid-phase peeling,thermal oxidation peeling and acid-base chemical peeling for ultra-thin graphite carbon nitride nanosheets [J]. Ultrasonics Sonochemistry,2018,48:181-187. [25] GU Q, GAO Z W, ZHAO H A, et al. Temperature- controlled morphology evolution of graphitic carbon nitride nanostructures and their photocatalytic activities under visible light [J]. RSC Advances,2015,5(61):49317-49325. [26] POSUDIEVSKY O Y, KONDRATYUK A S,KOZARENKO O A,et al. Effect of mechanochemical preparation of 2D g-C3N4 on electronic properties and efficiency of photocatalytic hydrogen evolution [J]. International Journal of Hydrogen Energy,2019,44(33):17922-17929. [27] DOU T W, ZANG L L, ZHANG Y H, et al. Hybrid g-C3N4 nanosheet/carbon paper membranes for the photocatalytic degradation of methylene blue [J]. Materials Letters,2019,244:151-154. [28] ZHU B C,CHENG B,ZHANG L Y,et al. Review on DFT calculation of s-triazine-based carbon nitride [J]. Carbon Energy,2019,1(1):32-56. [29] KANG S F,ZHANG L,HE M F,et al. "Alternated cooling and heating" strategy enables rapid fabrication of highly-crystalline g-C3N4 nanosheets for efficient photocatalytic water purification under visible light irradiation [J]. Carbon,2018,137:19-30.
[1]张 权,董广峰,马鸣杨,等.碱式氯化镁晶须的制备及其生长机理研究[J].武汉工程大学学报,2023,45(03):256.[doi:10.19843/j.cnki.CN42-1779/TQ.202210013]
ZHANG Quan,DONG Guangfeng,MA Mingyang,et al.Preparation of Basic Magnesium Chloride Whiskers andTheir Growth Mechanism[J].Journal of Wuhan Institute of Technology,2023,45(03):256.[doi:10.19843/j.cnki.CN42-1779/TQ.202210013]