|本期目录/Table of Contents|

[1]王振鹏,黄民水*,卢海林.基于振动监测的工字钢梁温度-频率关系模型[J].武汉工程大学学报,2020,42(03):321-326.[doi:10.19843/j.cnki.CN42-1779/TQ.201912012]
 WANG Zhenpeng,HUANG Minshui*,LU Hailin.Model of Frequency Versus Temperature of Steel I-Beam Based on Vibration Monitoring[J].Journal of Wuhan Institute of Technology,2020,42(03):321-326.[doi:10.19843/j.cnki.CN42-1779/TQ.201912012]
点击复制

基于振动监测的工字钢梁温度-频率关系模型(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年03期
页码:
321-326
栏目:
资源与环境工程
出版日期:
2023-03-14

文章信息/Info

Title:
Model of Frequency Versus Temperature of Steel I-Beam Based on Vibration Monitoring
文章编号:
1674 - 2869(2020)03 - 0321 - 06
作者:
王振鹏黄民水*卢海林
武汉工程大学土木工程与建筑学院,湖北 武汉 430074
Author(s):
WANG ZhenpengHUANG Minshui*LU Hailin
School of Civil Engineering and Architecture,Wuhan Institute of Technology, Wuhan 430074, China
关键词:
工字钢梁温度频率简单线性回归模型自回归各态历经模型均方根误差
Keywords:
steel I-beamtemperaturefrequencysimple linear regression modelautoregressive exogenous model root mean square error
分类号:
U445
DOI:
10.19843/j.cnki.CN42-1779/TQ.201912012
文献标志码:
A
摘要:
为了区分温度和损伤导致的结构动力特性变化,避免健康监测系统误报警,建立了工字钢梁的温度-频率的关系模型。首先,进行了长达1 a的振动监测,得到了180组温度作用下的频率,发现温度升高时,频率逐渐降低。然后,建立了简单线性回归(SLR)模型,前4阶温度与频率线性相关系数为0.834 3,0.822 6,0.808 8和0.855 9,相关性较高。随后,建立了自回归各态历经(ARX)模型,对比了SLR模型和ARX模型的均方根误差(RMSE),发现ARX模型的前4阶频率RMSE值为0.011 9,0.163 6,0.183 3和0.204 1,而SLR模型的前4阶频率RMSE值为0.125 3,0.476 1,0.508 6和0.556 2,ARX模型能更好地量化温度与频率的关系。最后建立了ARX模型的95%置信区间,根据频率变化是否超过置信区间可判断结构是否有损伤。
Abstract:
To investigate the change of structural dynamic characteristics arising from temperature or damage for avoiding a false alarm in the health monitoring,we constructed models of frequencies versus temperature for a steel I-beam. Firstly,a vibration monitoring during almost one year was carried out and 180 sets of frequencies of the steel I-beam under temperature variations were obtained,it was found that the frequencies decrease with the increase of temperature. Secondly,the simple linear regression (SLR) model was constructed and the linear regression coefficients of the first four frequencies are respectively 0.834 3,0.822 6,0.808 8 and 0.855 9,which show good correlation. Then,the autoregressive exogenous (ARX) models were constructed and the root-mean-square errors (RMSEs) of SLR model and ARX model were analyzed comparatively,it is found the RMSEs of the first four frequencies of ARX model are respectively 0.011 9,0.163 6,0.183 3 and 0.204 1,however,those of SLR model are 0.125 3,0.476 1,0.508 6 and 0.556 2 respectively,it is demonstrated that the ARX model can quantify the relationship between frequencies and temperature better. Finally,the 95% confidence intervals of the ARX model were constructed,where the damage can be detected based on the criterion whether the frequency variations exceed the confidence intervals.

参考文献/References:

[1] 宗周红,张坤,廖聿宸,等. 考虑运营环境不确定性的斜拉桥模态频率识别[J]. 中国公路学报,2019,32(11):40-50. [2] 王贤强,张建东,焦峪波. 钢筋混凝土板模态频率的温度效应分析及剔除方法[J]. 科学技术与工程,2019,19(23):264-270. [3] 王贤强,曹辉,刘寒冰,等. 温度对钢筋混凝土简支梁模态频率影响机理的研究[J]. 交通科技,2019(4):1-4,9. [4] 王立宪. 考虑温度影响下的钢筋混凝土梁桥的模态参数识别研究[D]. 兰州:兰州理工大学,2009. [5] XIA Y,HAO H,ZANARDO G,et al. Long term vibration monitoring of an RC slab: temperature and humidity effect [J]. Engineering Structures,2006,28(3):441-452. [6] PEETERS B,MAECK J, DE ROECK G. Vibration- based damage detection in civil engineering:excitation sources and temperature effects [J]. Smart Materials and Structures,2001,10(3):518-527. [7] ZHAO J,DEWOLF J T. Dynamic monitoring of steel girder highway bridge [J]. Journal of Bridge Engineering,2002,7(6):350-356. [8] ALAMPALLI S. Influence of in-service environment on modal parameters [C]// Society for Experimental Mechanics, Bethel, Connecticut. Proceedings of SPIE. Proceeding of the 16th International Modal Analysis Conference (IMAC). Santa Barbara,Californai, February 2-5,1998.[S.l.]:Society of Photo-Optical Instrumentation Engineers,1998:111-116.[9] NI Y Q,HUA X G,FAN K Q,et al. Correlating modal properties with temperature using long-term monitoring data and support vector machine technique [J]. Engineering Structures,2005,27(12):1762-1773. [10] LIU H B,WANG X Q,JIAO Y B. Effect of temperature variation on modal frequency of reinforced concrete slab and beam in cold regions [J]. Shock and Vibration,2016,12(5):1-17. [11] 李小年,陈艾荣,马如进. 温度对桥梁模态参数的影响[J]. 华南理工大学学报(自然科学版),2012,40(4):138-143. [12] 于艳玲. 温度对结构模态频率影响研究[D]. 大连:大连交通大学,2010. [13] 王贤强. 温度影响下钢筋混凝土简支梁桥动力特性分析与损伤识别方法研究[D]. 长春:吉林大学,2017. [14] 薛定宇,陈阳泉. 控制数学问题的MATLAB求解[M]. 北京:清华大学出版社,2007. [15] 李柏年. MATLAB数据分析方法[M]. 北京:机械工业出版社,2012. [16] PEETERS B,ROECK G D. One-year monitoring of the Z24-Bridge:environmental effects versus damage events [J]. Earthquake Engineering & Structural Dynamics,2001,30(2):149-171.

相似文献/References:

[1]赵振华.橡胶硫化温度的模糊控制[J].武汉工程大学学报,2008,(04):93.
 ZHAO Zhen hua.Fuzzy control of vulcanization temperature[J].Journal of Wuhan Institute of Technology,2008,(03):93.
[2]袁江,胡明辅*,毕二朋,等.湿空气饱和水蒸气压数学计算式的拟合与优选[J].武汉工程大学学报,2011,(10):25.
 YUAN Jiang,HU Ming fu,BI Er peng,et al.Formulas fitting and optimizing of saturated watervapor pressure of moist air[J].Journal of Wuhan Institute of Technology,2011,(03):25.
[3]许钢,林园胜,胡天水,等.虚拟仪器技术在温度采集系统中的应用[J].武汉工程大学学报,2013,(07):81.[doi:103969/jissn16742869201307016]
 XU Gang,LIN Yuan sheng,HU Tian shui,et al.Application of virtual instrument technologyin temperature acquisition system[J].Journal of Wuhan Institute of Technology,2013,(03):81.[doi:103969/jissn16742869201307016]
[4]周剑秋,叶志雄,邱奇,等.温度与应变率对Cu70 Zn30孪晶变形的影响[J].武汉工程大学学报,2014,(05):42.[doi:103969/jissn16742869201405010]
 ZHOU Jian qiu,YE Zhi xiong,QIU Qi,et al.Effects of strain rate and temperature on deformation twinning in Cu70Zn30 alloy[J].Journal of Wuhan Institute of Technology,2014,(03):42.[doi:103969/jissn16742869201405010]
[5]刘 岑,杨 帆,刘 兵,等.室温与超低温时奥氏体不锈钢S30408的屈强比[J].武汉工程大学学报,2018,40(02):228.
 LIU Cen,YANG?Fan,LIU Bing,et al.Austenitic Stainless Steel S30408 Yield Ratio at Room Temperature and Ultra-Low Temperature[J].Journal of Wuhan Institute of Technology,2018,40(03):228.
[6]吕全红,肖莲珍*.基于水化动力学模型的水泥基材料温度效应[J].武汉工程大学学报,2020,42(04):434.[doi:10.19843/j.cnki.CN42-1779/TQ.201910011]
 Lu Quanhong,XIAO Lianzhen*.Temperature Effect of Cement-Based Materials Based on Hydration Kinetics Model[J].Journal of Wuhan Institute of Technology,2020,42(03):434.[doi:10.19843/j.cnki.CN42-1779/TQ.201910011]
[7]程凯旋,杨加美,丁珮珊,等.高密度聚乙烯垫片的非线性压缩-回弹性能测试[J].武汉工程大学学报,2021,43(04):468.[doi:10.19843/j.cnki.CN42-1779/TQ. 202105019]
 CHENG Kaixuan,YANG Jiamei,DING Peishan,et al.Nonlinear Compression-Resilience Performance Test of HDPE Gaskets[J].Journal of Wuhan Institute of Technology,2021,43(03):468.[doi:10.19843/j.cnki.CN42-1779/TQ. 202105019]
[8]雷 德,蔡 璐*.压缩二氧化碳和甲基吡咯烷酮剥离石墨烯的分子动力学模拟[J].武汉工程大学学报,2023,45(01):48.[doi:10.19843/j.cnki.CN42-1779/TQ.202201006]
 LEI De,CAI Lu*.Molecular Dynamics Simulation of Graphene Exfoliation in MixedSolvent of Compressed Carbon Dioxide and Methylpyrrolidon[J].Journal of Wuhan Institute of Technology,2023,45(03):48.[doi:10.19843/j.cnki.CN42-1779/TQ.202201006]
[9]江志豪,文小玲*,舒李俊.水产养殖水域的溶解氧浓度检测方法研究[J].武汉工程大学学报,2023,45(02):196.[doi:10.19843/j.cnki.CN42-1779/TQ.202210023]
 JIANG Zhihao,WEN Xiaoling*,SHU Lijun.Detection Method of Dissolved Oxygen Concentration in Aquaculture Waters[J].Journal of Wuhan Institute of Technology,2023,45(03):196.[doi:10.19843/j.cnki.CN42-1779/TQ.202210023]
[10]张 芸,宋 刚*,刘 军,等.用于奶油色素定量分析的注意力残差网络设计与验证[J].武汉工程大学学报,2024,46(04):410.[doi:10.19843/j.cnki.CN42-1779/TQ.202310012]
 ZHANG Yun,SONG Gang*,LIU Jun,et al.Design and verification of attention residual network for quantitative analysis of cream pigments[J].Journal of Wuhan Institute of Technology,2024,46(03):410.[doi:10.19843/j.cnki.CN42-1779/TQ.202310012]

备注/Memo

备注/Memo:
基金项目:武汉工程大学第十届研究生教育创新基金 (CX2018043)作者简介:王振鹏,硕士研究生。E-mail: [email protected]*通讯作者:黄民水,博士,副教授。E-mail: [email protected]引文格式:王振鹏,黄民水,卢海林. 基于振动监测的工字钢梁温度-频率关系模型[J]. 武汉工程大学学报,2020,42(3):321-326.
更新日期/Last Update: 2020-07-09