[1] WEI P F, ZHANG X P, LIU J K, et al. New wine in old bottles: prolonging room-temperature phosphorescence of crown ethers by supramolecular interactionsl[J]. Angewandte Chemie International edtion,2020,59(24):9293-9298. [2] ZHANG Y M, LIU Y H, LIU Y. Cyclodextrin-based multistimuli-responsive supramolecular assemblies and their biological functionsl[J]. Advance Science,2020,32(3):1806158. [3] COSTA A I,BARATA P D,FIALHO C B,et al. Highly sensitive and selective fluorescent probes for Cu(II) detection based on calix[4]arene-oxacyclophane architecturesl[J]. Molecules,2020,25(10):2456. [4] ZHANG Y C, XU Z Y, WANG Z K, et al. A woven supramolecular metal-organic framework comprising a ruthenium bis(terpyridine) complex and cucurbit[8]uril: enhanced catalytic activity toward alcohol oxidationl[J]. Chempluschem,2020,85(7):1498-1503. [5] ZHANG H C,LIU Z N,FU H. Pillararenes trimer for self- assemblyl [J]. Nanomaterials,2020,10(4):651. [6] LEE J W, SAMAL S, SELVAPALAM N, et al. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistryl[J]. Accounts of Chemical Research,2003,36(8):621- 630. [7] MURRAY J ,KIM K, OGOSHI T, et al. The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitandsl[J]. Chemical Society Reviews,2017,46(9):2479-2496. [8] LIU Z C, NALLURI S K M, STODDART J F. Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanesl[J]. Chemical Society Reviews,2017,46(9):2459-2478. [9] CRINI G. Review: a history of cyclodextrins[J]. Chemical Reviews,2014,114(21):10940-10975. [10] LANGTON M J, BEER P D. Rotaxane and catenane host structures for sensing charged guest species[J]. Accounts of Chemical Research,2014,47(7):1935-1949. [11] MCCONNELL A J,WOOD C S,NEELAKANDAN P P,et al. Stimuli-responsive metal-ligand assemblies[J]. Chemical Reviews,2015,115(15):7729-7793. [12] QU D H,WANG Q C,ZHANG Q W,et al. Photores- ponsive host-guest functional systems[J]. Chemical Reviews,2015,115(15):7543-7588. [13] BRUNS C J,STODDART J F. Rotaxane-based molecular muscles[J]. Accounts of Chemical Research,2014,47(7):2186-2199. [14] YAN X Z,WANG F,ZHENG B,et al. Stimuli-responsive supramolecular polymeric materials[J]. Chemical Society Reviews,2012,41(18):6042-6065. [15] CHEN Y, HUANG F, LI Z T, et al. Controllable macrocyclic supramolecular assemblies in aqueous solution[J]. Science China Chemistry,2018,61(8):979-992. [16] QI Z, SCHALLEY C A. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry[J]. Accounts of Chemical Research,2014,47(7):2222-2233. [17] WILLIAMS R J, SMITH A M, COLLINS R, et al. Enzyme-assisted self-assembly under thermodynamic control [J]. Nat Nanotechnol,2009,4(1):19-24. [18] LI P Y,CHEN Y,CHEN C H,et al. Multi-charged bis(p-calixarene)/pillararene functionalized gold nanoparticles for ultra-sensitive sensing of butyrylcholinesterase[J]. Soft Matter,2019,15(41):8197-8200. [19] ZHAI L. Stimuli-responsive polymer films [J]. Chemical Society Reviews,2013,42(17):7148-7160. [20] APPEL E A, LOH X J, JONES S T,et al. Ultrahigh- water-content supramolecular hydrogels exhibiting multistimuli responsiveness[J]. Journal of the American Chemical Society,2012,134(28):11767-11773. [21] CHANG Y C,YANG K,WEI P,et al. Cationic vesicles based on amphiphilic pillar[5]arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery[J]. Angewandte Chemie,International Edition in English,2014,53(48):13126-13130. [22] XUE W,ZAVALIJ P Y,ISAACS L. Pillar[n]MaxQ: a new high affinity host family for sequestration in waterl[J]. Angewandte Chemie,International Edition in English,2020,59(32):13313-13319. [23] PAEK K,YANG H,LEE J,et al. Efficient colorimetric pH sensor based on responsive polymer-quantum dot integrated graphene oxide[J]. ACS Nano,2014,8(3):2848-2856. [24] NI Y X,YIN M J,DONG S Y,et al. A poly(ionic liquid)-pillar[5]arene honeycombed isoporous membrane for high performance Cu2+ sensors[J]. Applied Surface Science,2020,500:144056. [25] PEDERSEN C J. Cyclic polyethers and their complexes with metal salts[J]. Journal of the American Chemical Society,1967,89(26):7017-7036. [26] LI D D,ZHANG Q,ZHAO W X,et al. Thermo/anion dual-responsive supramolecular organoplatinum-crown ether complexl[J]. Organic Letters,2020,22(11):4289-4293. [27] ZHANG M M, YAN X Z,HUANG F H,et al. Stimuli- responsive host-Guest systems based on the recognition of cryptands by organic guests[J]. Accounts of Chemical Research,2014,47(7):1995-2005. [28] CHENG M,ZHANG J,REN X T,et al. Acid/base- controllable fluorescent molecular switches based on cryptands and basic N-heteroaromatics[J]. Chemical Communications,2017,53(86):11838-11841. [29] XING H, WANG H,YAN X Z, et al. A responsive supramolecular metallogel constructed by coordination- driven self-assembly of a crown ether-based [3]pseudorotaxane and a diplatinum(II) acceptor[J]. Dalton Trans,2015,44(25):11264-11268. [30] CHEN L,CHEN Y,FU H G,et al. Reversible emitting anti-counterfeiting ink prepared by anthraquinone- modified beta-cyclodextrin supramolecular polymerl[J]. Advance Science,2020,7(14):2000803. [31] MA X, TIAN H. Stimuli-responsive supramolecular polymers in aqueous solution[J]. Accounts of Chemical Research, 2014,47(7):1971-1981. [32] KANG Y, CAI Z, TANG X,et al. An amylase- responsive bolaform supra-amphiphile[J]. ACS Applied Materials & Interfaces,2016,8(7):4927-4933. [33] LU Y Q, ZOU H, YUAN H, et al. Triple stimuli- responsive supramolecular assemblies based on host- guest inclusion complexation between β-cyclodextrin and azobenzene[J]. European Polymer Journal,2017,91:396-407. [34] GUO D S, LIU Y. Calixarene-based supramolecular polymerization in solution[J]. Chemical Society Reviews,2012,41(18):5907-5921. [35] POCHOROVSKI I, DIEDERICH F. Development of redox-switchable resorcin[4]arene cavitands[J]. Accounts of Chemical Research,2014,47(7):2096-2105. [36] GUO D S,WANG K,WANG Y X,et al. Cholinesterase- responsive supramolecular vesicle[J]. Journal of the American Chemical Society,2012,134(24):10244- 10250. [37] WANG K P,CHEN Y,LIU Y. A polycation-induced secondary assembly of amphiphilic calixarene and its multi-stimuli responsive gelation behavior[J]. Chemical Communications,2015,51(9):1647-1649. [38] WANG J, HUANG Z Z, MA X, et al. Visible-light- excited room-temperature phosphorescence in water by cucurbit[8]uril-mediated supramolecular assemblyl[J]. Nanomaterials,2020,59(25):9928-9933. [39] BHASIKUTTAN A C,PAL H,MOHANTY J. Cucurbit[n]uril based supramolecular assemblies: tunable physico-chemical properties and their prospects[J]. Chemical Communications,2011,47(36):9959- 9971. [40] KULATHINTE MEETHAL S, SASMAL R,PAHWA M,et al. Cucurbit[7]uril-directed assembly of colloidal membrane and stimuli-responsive microcapsules at the liquid-liquid interface[J]. Langmuir,2018,34(2):693-699. [41] MONDAL J H, AHMED S, GHOSH T, et al. Reversible deformation-formation of a multistimuli responsive vesicle by a supramolecular peptide amphiphile[J]. Soft Matter,2015,11(24):4912- 4920. [42] LOU X Y, YANG Y W. Pillar[n] arene-based supramolecular switches in solution and on surfaces [J]. Applied Biochemistry and Biotechnology,2020,190:1484-1497. [43] KAKUTA T, YAMAGISHI T A,OGOSHI T. Stimuli- responsive supramolecular assemblies constructed from pillar[n]arenes[J]. Accounts of Chemical Research,2018,51(7):1656-1666. [44] BI J, ZENG X, TIAN D, et al. Temperature- responsive switch constructed from an anthracene-functionalized pillar[5]arene-based host-guest system[J]. Organic Letters,2016,18(5):1092-1095. [45] CHEN J F, CHEN P K. Pillar[5] arene-based resilient supramolecular gel with dual-stimuli responses and self-healing properties[J]. ACS Applied Polymer Materials,2019,1(8):2224-2229.