|本期目录/Table of Contents|

[1]郑思洁,李向葵,曹飘杨,等.多孔有机聚合物在固相萃取应用中的研究进展[J].武汉工程大学学报,2021,43(02):155-162.[doi:10.19843/j.cnki.CN42-1779/TQ.202008008]
 ZHENG Sijie,LI Xiangkui,CAO Piaoyang,et al.Progress in Application of Porous Organic Polymers in Solid Phase Extraction[J].Journal of Wuhan Institute of Technology,2021,43(02):155-162.[doi:10.19843/j.cnki.CN42-1779/TQ.202008008]
点击复制

多孔有机聚合物在固相萃取应用中的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年02期
页码:
155-162
栏目:
化学与化学工程
出版日期:
2021-04-30

文章信息/Info

Title:
Progress in Application of Porous Organic Polymers in Solid Phase Extraction
文章编号:
1674 - 2869(2021)02 - 0155 - 08
作者:
郑思洁李向葵曹飘杨李婷婷白向茹王利华夏 定战艺芳姚 琪王嫦嫦*
武汉市农业科学院环境与安全研究所,湖北 武汉 430207
Author(s):
ZHENG Sijie LI Xiangkui CAO Piaoyang LI Tingting BAI Xiangru WANG Lihua XIA Ding ZHAN Yifang YAO Qi WANG Changchang*
Institute of Environment and Safety, Wuhan Academy of Agricultural Science, Wuhan 430207, China,
关键词:
固相萃取多孔有机聚合物样品前处理
Keywords:
solid phase extraction porous organic polymers sample pretreatment
分类号:
TQ014
DOI:
10.19843/j.cnki.CN42-1779/TQ.202008008
文献标志码:
A
摘要:
多孔有机聚合物(POPs)具有良好的耐酸碱稳定性、水稳定性、高的比表面积和丰富多孔结构,在固相萃取过程(SPE)中可加速传质和降低柱压,其丰富的功能基有利于提高吸附性能,可有效改善商品化SPE柱选择性较差、使用寿命较短且萃取效率不高等问题。近年来,应用到SPE领域的POPs主要包括超交联聚合物、共价有机骨架、多孔芳香骨架和共轭微孔聚合物四类。针对分析对象选择合适POPs的关键点在于设计引入更多活性位点获得更高的萃取效率以及合成与目标分析物尺寸相匹配的POPs。本文综述了POPs的分类、结构类型及合成方法,介绍了不同类型的POPs材料及其在SPE领域的应用,阐述分析了各方法的检测原理及优势。随着POPs的飞速发展,孔径精确可控的官能化POPs将会在食品分析、药物分析和环境检测等领域发挥更为重要的作用。
Abstract:
Porous organic polymers (POPs) possess the merits of good resistance to acid, alkali, water, high specific surface area and porous structure, which can accelerate mass transfer and reduce column pressure in solid phase extraction (SPE) process. Moreover, POPs’ rich functional groups are conducive to its adsorption performance. The poor selectivity, short lifetime and low extraction efficiency of commercial SPE column can be evidently improved by POPs-based SPE methods. Recently, hypercrosslinked polymers, covalent organic frameworks, porous aromatic frameworks and conjugated microporous polymers have been used in SPE. The key point of selecting suitable POPs for target analytes is introducing more active sites to obtain higher extraction efficiency, and synthesizing POPs that match the pore size of target analytes. In this paper, the classification and synthesis of POPs were reviewed, different types of POPs and their applications in SPE were also introduced. Additionally, the detection principle of each method was analyzed. With the rapid development of POPs, functionalized POPs with controllable pore size will play important roles in food analysis, drug analysis and environmental monitoring.

参考文献/References:

[1] MALY K E. Assembly of nanoporous organic materials from molecular building blocks[J]. Journal of Materials Chemistry, 2009, 19: 1781-1787.?

[2] COTE A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310: 1166-1170.?
[3] HOU S S, WANG S L, LONG X J, et al. Knitting polycyclic aromatic hydrocarbon-based microporous organic polymers for efficient CO2 capture[J]. RSC Advances, 2018, 8: 10347-10354.?
[4] TAN M X, ZHANG Y G, YING J Y. Mesoporous poly(melamine-formaldehyde) solid sorbent for carbon dioxide[J]. Chemsuschem, 2013, 1: 435-435. [5] WANG Z F, ZHANG S N, CHEN Y, et al. Covalent organic frameworks for separation applications[J]. Chemical Society Reviews, 2020, 49: 708-735. [6] VILIAN A T E, PYTHIARAJ P, KWAK C H, et al. Fabrication of palladium nanoparticles on porous aromatic frameworks as a sensing platform to detect vanillin[J]. ACS Applied Materials & Interfaces, 2016, 8: 12740-12747.?
[7] ZHANG T, XING G L, CHEN W B, et al. Porous organic polymers: a promising platform for efficient photocatalysis[J]. Materials Chemistry Frontiers, 2020, 4: 332-353.?
[8] SONG Y P, SUN Q, AGUILA B, et al. Opportunities of covalent organic frameworks for advanced applications[J]. Advanced Science, 2019, 6: 1801410.?
[9] LUO S J, ZHANG Q N, ZHANG Y Z, et al. Facile synthesis of a pentiptycene-based highly microporous organic polymer for gas storage and water treatment[J]. Acs Applied Materials & Interfaces, 2018, 10: 15174-15182.?
[10] DAWSON R, COOPER A I, ADAMS D J. Nanoporous organic polymer networks[J]. Progress in Polymer Science, 2012, 37: 530-563.?
[11] TAN L X, TAN B. Hypercrosslinked porous polymer materials: design, synthesis, and applications[J]. Chemical Society Reviews, 2017, 46: 3322-3356.?
[12] GERMAIN J,  FRECHET J  M J,  SVEC F. Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential adsorbents for hydrogen storage[J]. Journal of Materials Chemistry, 2007, 17: 4989-4997.?
[13] GENG K Y, HE T, LIU R Y, et al. Covalent organic frameworks: design, synthesis, and functions[J]. Chemical Reviews, 2020, 120: 8814-8933. [14] LIU M Y, GUO L P, JIN S B, et al. Covalent triazine frameworks: synthesis and applications[J]. Journal of Materials Chemistry A, 2019, 7: 5153-5172.?
[15] ZHANG Y B, SU J, FURUKAWA H, et al. Single-crystal structure of a covalent organic framework[J]. Journal of the American Chemical Society, 2013, 135: 16336-16339.?
[16] BAO T, TANG P X, KONG D Y, et al. Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation[J]. Journal of Chromatography A, 2016, 1445: 140-148.?
[17] FURUKAWA H, YAGHI O M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J]. Journal of the American Chemical Society, 2009, 131: 8875-8883.?
[18] MCKEOWN N B. The synthesis of polymers of intrinsic microporosity (PIMs)[J]. Science China Chemistry, 2017,60: 1023-1032.?
[19] GHANEM B S, HASHEM M, HARRIS K D M, et al. Triptycene-based polymers of intrinsic microporosity: organic materials that can be tailored for gas adsorption[J]. Macromolecules, 2010, 43: 5287-5294.?
[20] BUDD P M, MSAYIB K J, TATTERSHALL C E, et al. Gas separation membranes from polymers of intrinsic microporosity[J]. Journal of Membrane Science, 2005, 251: 263-269.?
[21] MCKEOWN N B, BUDD P M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage[J]. Chemical Society Reviews, 2006, 35: 675-683.?
[22] TAN J, CHEN W J, GUO J. Conjugated microporous polymers with distinctive pi-electronic properties exhibiting enhanced optical applications[J]. Chinese Chemical Letters, 2016, 27: 1405-1411.
[23] XU Y H, JIN S B, XU H, et al. Conjugated microporous polymers: design, synthesis and application[J]. Chemical Society Reviews, 2013, 42 : 8012-8031.?
[24] ZHANG G G, LAN Z A, WANG X C. Conjugated polymers: catalysts for photocatalytic hydrogen evolution[J]. Angewandte Chemie-International Edition, 2016, 55: 15712-15727.?
[25] TIAN Y Y, ZHU G S. Porous aromatic frameworks (PAFs)[J]. Chemical Reviews, 2020, 120: 8934-8986.?
[26] BEN T, REN H, MA S Q, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie-International Edition, 2009, 48: 9457-9460.?
[27] YUAN Y, SUN F X, REN H, et al.  Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules[J]. Journal of Materials Chemistry, 2011, 21:13498-13502.?
[28] FONTANALS N, MARCE R M, CORMACK P A G, et al. Monodisperse, hypercrosslinked polymer microspheres as tailor-made sorbents for highly efficient solid-phase extractions of polar pollutants from water samples[J]. Journal of Chromatography A, 2008, 1191: 118-124.?
[29] FONTANALS  N,   CORMACK  P  A  G, SHERRINGTON D C. Hypercrosslinked polymer microspheres with weak anion-exchange character preparation of the microspheres and their applications in pH-tuneable, selective extractions of analytes from complex environmental samples[J]. Journal of Chromatography A, 2008, 1215: 21-29.?
[30] FONTANALS N, CORMACK P A G, SHERRINGTON D C, et al. Weak anion-exchange hypercrosslinked sorbent in on-line solid-phase extraction-liquid chromatography coupling to achieve automated determination with an effective clean-up[J]. Journal of Chromatography A, 2010, 1217: 2855-2861.?
[31] BRATKOWSKA D, MARCE R M, CORMACK P A G, et al. Synthesis and application of hypercrosslinked polymers with weak cation-exchange character for the selective extraction of basic pharmaceuticals from complex environmental water samples[J]. Journal of Chromatography A, 2010, 1217: 1575-1582.?
[32] BRATKOWSKA D, FONTANALS N, BORRULL F, et al. Hydrophilic hypercrosslinked polymeric sorbents for the solid-phase extraction of polar contaminants from water[J]. Journal of Chromatography A, 2010, 1217: 3238-3243.?
[33] ZHANG C J, LI G K, ZHANG Z M. A hydrazone covalent organic polymer based micro-solid phase extraction for online analysis of trace sudan dyes in food samples[J]. Journal of Chromatography A, 2015, 1419: 1-9.?
[34] ZHONG C, CHEN B B, HE M, et al.  Covalent triazine framework-1 as adsorbent for inline solid phase extraction-high performance liquid chromatographic analysis of trace nitroimidazoles in porcine liver and environmental waters[J]. Journal of Chromatography A, 2017, 1483: 40-47.?
[35] WANG S, NIU H, CAO D, et al. Covalent-organic frameworks as adsorbent and matrix of SALDI-TOF MS for the enrichment and rapid determination of fluorochemicals[J]. Talanta, 2019, 194: 522-527.?
[36] LIU J M, HAO J L, YUAN X Y, et al. Wang, Spherical covalent organic frameworks as advanced adsorbents for preconcentration and separation of phenolic endocrine disruptors, followed by high performance liquid chromatography[J]. RSC Advances, 2018, 8: 26880-26887.?
[37] LI W X,HUANG L,GUO D D,et al. Self-assembling covalent organic framework functionalized poly (styrene-divinyl benzene-glycidylmethacrylate) composite for the rapid extraction of non-steroidal anti-inflammatory drugs in wastewater[J]. Journal of Chromatography A, 2018, 1571: 76-83.?
[38] JI W H , SUN R.H , GENG Y L, et al. Rapid, low temperature synthesis of molecularly imprinted covalent organic frameworks for the highly selective extraction of cyano pyrethroids from plant samples[J]. Analytica Chimica Acta, 2018, 1001: 179-188.?
[39] ZHENG S J, HE M, CHEN B B, et al. Melamine-based porous organic polymers inline solid phase extraction coupled with high performance liquid chromatography for the analysis of phytohormones in juice samples[J]. Journal of Chromatography A, 2018, 1567: 64-72.?
[40] YIN D, CHEN Y L, ZHANG Y H, et al. 2D porous aromatic framework as a novel solid-phase extraction adsorbent for the determination of trace BPA in milk[J]. Chromatographia, 2018, 81: 749-758.?
[41] CHANG Q Y, ZANG X H, WU T, et al. Use of functionalized covalent organic framework as sorbent for the solid-phase extraction of biogenic amines from meat samples followed by high-performance liquid chromatography[J]. Food Analytical Methods, 2019, 12: 1-11.?
[42] SONG Y H, MA R Y, HAO L, et al. Application of covalent organic framework as the adsorbent for solid-phase extraction of trace levels of pesticide residues prior to high-performance liquid chromatography-ultraviolet detection[J]. Journal of Chromatography A, 2018, 1572 : 20-26.?
[43] WANG X L, MA R Y, HAO L, et al. Mechanochemical synthesis of covalent organic framework for the efficient extraction of benzoylurea insecticides[J]. Journal of Chromatography A, 2018, 1551: 1-9.?
[44] LIANG X Y, WANG J T, WU Q H, et al. Use of a hypercrosslinked triphenylamine polymer as an efficient adsorbent for the enrichment of phenylurea herbicides[J]. Journal of Chromatography A, 2018, 1538: 1-7.?
[45] JONES O A H, VOULVOULIS N, LESTER J N. Analytical method development for the simultaneous determination of five human pharmaceuticals in water and wastewater samples by gas chromatography-mass spectrometry[J]. Chromatographia, 2003, 58: 471-477.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-08-06基金项目:湖北省自然科学基金青年基金(2019CFB408)作者简介:郑思洁,硕士。E-mail:[email protected]*通讯作者:王嫦嫦,硕士。E-mail:[email protected]引文格式:郑思洁,李向葵,曹飘扬,等. 多孔有机聚合物在固相萃取中应用的研究进展[J]. 武汉工程大学学报,2021,43(2):155-162.
更新日期/Last Update: 2021-04-26