|本期目录/Table of Contents|

[1]陶雪华,夏述平,崔 宇,等.硫粉气化温度对制备WS2薄膜的影响[J].武汉工程大学学报,2021,43(02):187-191.[doi:10.19843/j.cnki.CN42-1779/TQ.202011023]
 TAO Xuehua,XIA Shuping,CUI Yu,et al.Effect of Gasification Temperature of Sulfur Powder on Preparation of Tungsten Disulfide Thin Films[J].Journal of Wuhan Institute of Technology,2021,43(02):187-191.[doi:10.19843/j.cnki.CN42-1779/TQ.202011023]
点击复制

硫粉气化温度对制备WS2薄膜的影响(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年02期
页码:
187-191
栏目:
材料科学与工程
出版日期:
2021-04-30

文章信息/Info

Title:
Effect of Gasification Temperature of Sulfur Powder on Preparation of Tungsten Disulfide Thin Films
文章编号:
1674 -2869(2021)02 -0187 -05
作者:
陶雪华夏述平崔 宇邱云帆熊礼威*
等离子体化学与新材料湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
TAO XuehuaXIA ShupingCUI YuQIU YunfanXIONG Liwei*
Hubei Key Laboratory of Plasma Chemical and Advanced Materials(Wuhan Institute of Technology),Wuhan 430205,China
关键词:
WS2薄膜表面形貌熔融盐化学气相沉积气化温度
Keywords:
WS2 thin filmsurface topographymolten saltchemical vapor depositiongasification temperature
分类号:
O484
DOI:
10.19843/j.cnki.CN42-1779/TQ.202011023
文献标志码:
A
摘要:
采用熔融盐辅助化学气相沉积(CVD)法在蓝宝石(Al2O3)衬底上制备WS2薄膜,改变硫粉的气化温度(750~800 ℃),探寻其对WS2薄膜生长的影响,为制备出大面积WS2薄膜提供理论依据。采用光学显微镜、扫描电子显微镜(SEM)和拉曼(Raman)光谱对WS2薄膜的形貌、结晶性和厚度进行分析。800 ℃时,WS2薄膜平均边长可达310 μm,Raman特征峰的波数差为64.60 cm-1(单层)。随着硫粉气化温度的升高,WS2薄膜的生长经历了形貌及尺寸的转变,这表明在沉积过程中,硫粉引入时机对WS2薄膜的形核、生长至关重要,适当的气化温度可以制备出尺寸较大、结晶性能良好的WS2薄膜。
Abstract:
Tungsten disulfide (WS2) thin films were prepared by melting salt-assisted chemical vapor deposition (CVD) method on sapphire (Al2O3) substrate. To provide theoretical basis for the preparation of large-size WS2 thin films,the gasification temperatures of sulfur powder were changed in the range of 750-800 ℃ to investigate their effects on the growth of WS2 thin films. The morphology,crystallinity and thickness of WS2 thin films were analyzed by optical microscope,scanning electron microscopy and Raman spectrometry,respectively. At 800 ℃,the average side length of WS2 thin film is 310 μm,and the wave number difference of Raman characteristic peak is 64.60 cm-1(monolayer). With the increase of the gasification temperature of sulfur powder,the WS2 thin films change in morphology and size,indicating that the timing of sulfur involved in the deposition process is crucial for the nucleation and growth of WS2 crystals. Large-size WS2 thin films with good crystallization performance can be prepared at appropriate gasification temperatures.

参考文献/References:

[1] CHUA C K, AMBROSI A, PUMERA M. Graphene based nanomaterials as electrochemical detectors in lab-on-a-chip devices [J]. Electrochemistry Communications,2011,13(5):517-519.

[2] GUO B J, YU K, LI H L, et al. Hollow structured micro/nano MoS2 spheres for high electrocatalytic activity hydrogen evolution reaction [J]. ACS Applied Materials & Interfaces,2016,8(8):5517-5525.
[3] LU Z Y,NEUANE G P,JIA G H,et al. 2D materials based on main group element compounds:phases,synthesis,characterization,and applications [J]. Advanced Functional Materials,2020,30(40):2001127:1-35.
[4] ZHENG B Y,ZHENG W H,JIANG Y,et al. WO3-WS2 vertical bilayer heterostructures with high photoluminescence quantum yield [J]. Journal of the American Chemical Society,2019,141(30):11754-11758.
[5] XUE Y Z, ZHANG Y P, LIU Y, et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors [J]. ACS Nano,2016,10(1):573-580.
[6] REN X H,WANG B,HUANG Z Y,et al. Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction [J]. FlatChem,2021,25:100215:1-8.
[7] PEREA-LóPEZ N,ELíAS A L,BERKDMIR A,et al. Photosensor device based on few-layered WS2 films [J]. Advanced Functional Materials,2013,23(44):5511-5517.
[8] MA X L,ZHANG R J,AN C H,et al. Efficient doping modulation of monolayer WS2 for optoelectronic applications [J]. Chinese Physics B,2019,28(3):037803:1-6.
[9] FIORI G,BONACCORSO F,IANNACCONE G,et al. Electronics based on two-dimensional materials [J]. Nature Nanotechnology,2014,9(10):768-779.
[10] PARADISANOS I,PLIATSIKAS N,PATSALAS P,et al. Spatial non-uniformity in exfoliated WS2 single layers [J]. Nanoscale,2016,8(36):16197-16203.
[11] SUN S B, LI Z J, CHANG X T. Synthesis and structural characterization of tungsten disulfide nanomaterials [J]. Materials Letters,2011,65(19/20):3164-3166.
[12] NOVOSELOV K S, JIANG D D, SCHEDIN F,et al. Two-dimensional atomic crystals [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(30):10451-10453.
[13] SMITH R J,KING P J,LOTYA M,et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions [J]. Advanced Materials,2011,23(34):3944-3948.
[14] COLEMAN J N,LOTYA M,O’NEILL A,et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials [J]. Science,2011,331(6017):568-571.
[15] YUN S J, CHAE S H, KIM H, et al. Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils [J]. ACS Nano,2015,9(5):5510-5519.
[16] CONG C X,SHANG J Z,WU X,et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition [J]. Advanced Optical Materials,2014,2(2):131-136.
[17] LAN C Y,LI C,YIN Y,et al. Large-area synthesis of monolayer WS2 and its ambient-sensitive photo-detecting performance [J]. Nanoscale,2015,7(14):5974-5980.
[18] ZHOU J D,LIN J H,HUANG X W, et al. A library of atomically thin metal chalcogenides [J]. Nature,2018,556(7701):355-359.
[19] ZHANG Y, ZHANG Y F, JI Q Q, et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary [J]. ACS Nano,2013,7(10):8963-8971.
[20] THANGARAJA A,SHINDE S M,KALITA G,et al. Effect of WO3 precursor and sulfurization process on WS2 crystals growth by atmospheric pressure CVD [J]. Materials Letters,2015,156:156-160.
[21] PAWBAKE A S, WAYKAR R G, LATE D J,et al. Highly transparent wafer scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity sensing applications [J]. ACS Applied Materials & Interfaces,2016,8(5):3359-3365.
[22] YUAN J T, NAJMAEI S, ZHANG Z H, et al. Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus [J]. ACS Nano,2015,9(1):555-563.
[23] TSAI H L, HEISING J, SCHINDLER J L, et al. Exfoliated-restacked phase of WS2 [J]. Chemistry of Materials,1997,9(4):879-882.
[24] TAN Q H,SUN Y J,LIU X L,et al. Breakdown of Raman selection rules by Fr?hlich interaction in few-layer WS2 [J]. Nano Research,2021,14(1):239-244.

相似文献/References:

[1]毛强强,文路,刘宏芳,等.硅基表面无形貌改变的硫酸/过氧化氢氧化清洗[J].武汉工程大学学报,2009,(05):1.
 MAO Qiang qiang,WEN Lu,LIU Hong fang,et al.Silicon wafer cleaning method without surface morphology change by sulfuric acid /hydrogen peroxide oxidation[J].Journal of Wuhan Institute of Technology,2009,(02):1.

备注/Memo

备注/Memo:
收稿日期:2020-11-17基金项目:湖北省教育厅重点项目(D20191503);武汉工程大学科学基金(K201801);武汉工程大学第十二届研究生教育创新基金(CX2020136)作者简介:陶雪华,硕士研究生。E-mail:[email protected]*通讯作者:熊礼威,博士,副教授。E-mail:[email protected]引文格式:陶雪华,夏述平,崔宇,等. 硫粉气化温度对制备WS2薄膜的影响[J]. 武汉工程大学学报,2021,43(2):187-191.
更新日期/Last Update: 2021-04-26