[1] FEDERER W T. Statistical design and analysis for intercropping experiments volume I: two crops [M]. New York : Springer-Verlag New York, 1993. [2] LI Q S, CHEN J, WU L K, et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems[J]. International Journal of Molecular Sciences, 2018, 19(2): 622. [3] LI C X, TIAN Q, RAHMAN M K U, et al. Effect of anti-fungal compound phytosphingosine in wheat root exudates on the rhizosphere soil microbial community of watermelon[J]. Plant and Soil,2020,456:223-240. [4] REN L X, HUO H W, ZHANG F, et al. The components of rice and watermelon root exudates and their effects on pathogenic fungus and watermelon defense[J]. Plant Signaling and Behavior, 2016, 11(6): e1187357. [5] GAO X, WU M, XU R N, et al. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot[J]. Plos One, 2014, 9(5): e95031. [6] ZHU S, MOREL J B. Molecular mechanisms underlying microbial disease control in intercropping[J]. Molecular Plant-Microbe Interactions, 2019, 32(1): 20-24. [7] DONG L L, LI X L, HUANG L, et al. Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection[J]. Journal of Experimental Botany, 2014, 65(1): 131-141. [8] 刘瑜, 疏再发, 邵静娜, 等. 茶园间作对病虫害防控效应与作用机制研究进展[J]. 茶叶通讯, 2021, 48(1): 7-14. [9] 付学鹏, 吴凤芝, 周新刚. 间作防控作物土传病害的机理研究进展[J]. 江苏农业科学, 2016, 44(1): 16-20. [10] 覃潇敏, 郑毅, 汤利, 等. 玉米与马铃薯间作对根际微生物群落结构和多样性的影响[J]. 作物学报, 2015, 41(6): 919-928. [11] LI N H, GAO D M, ZHOU X G, et al. Intercropping with potato-onion enhanced the soil microbial diversity of tomato[J]. Microorganisms, 2020, 8(6): 834. [12] ZHOU L J, WANG Y J, XIE Z K, et al. Effects of lily/maize intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor[J]. Journal of Basic Microbiology, 2018, 58(10): 892-901. [13] 董宇飞, 吕相漳, 张自坤, 等. 不同栽培模式对辣椒根际连作土壤微生物区系和酶活性的影响[J]. 浙江农业学报, 2019, 31(9): 1485-1492. [14] 吴凤芝, 周新刚. 不同作物间作对黄瓜病害及土壤微生物群落多样性的影响[J]. 土壤学报, 2009, 46(5): 899-906. [15] 苏世呜, 任丽轩, 霍振华, 等. 西瓜与旱作水稻间作改善西瓜连作障碍及对土壤微生物区系的影响[J]. 中国农业科学, 2008, 41(3): 704-712. [16] WU H M, LIN M H, RENSING C, et al. Plant-mediated rhizospheric interactions in intraspecific intercropping alleviate the replanting disease of Radix pseudostellariae[J]. Plant Soil,2020,454(1/2): 411-430. [17] 曹云, 马艳. 间套作防治作物土传枯萎病的研究进展[J]. 土壤, 2015, 47(3): 466-473. [18] 刘烈花, 董鹏, 李姗蓉, 等. 辣椒青枯病罹病与健康植株根际土壤微生物群落多样性研究[J]. 植物医生, 2021, 34(1): 41-47. [19] 董艳, 董坤, 杨智仙, 等. 间作减轻蚕豆枯萎病的微生物和生理机制[J]. 应用生态学报, 2016, 27(6): 1984-1992. [20] WAHBI S, PRIN Y, THIOULOUSE J, et al. Impact of wheat/faba bean mixed cropping or rotation systems on soil microbial functionalities[J]. Frontiers in Plant Science, 2016, 7: 1364. [21] 马玲, 马琨, 汤梦洁, 等. 间作与接种AMF对连作土壤微生物群落结构与功能的影响[J]. 生态环境学报, 2013, 22(8): 1341-1347. [22] LIAN T X, MU Y H, JIN J, et al. Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies[J]. Peerj, 2019, 7: e6412. [23] GUO F, WANG M L, SI T, et al. Maize-peanut intercropping led to an optimization of soil from the perspective of soil microorganism[J]. Archives of Agronomy and Soil Science, 2020, 66(14):1-14. [24] 杨亚东, 冯晓敏, 胡跃高, 等. 豆科作物间作燕麦对土壤固氮微生物丰度和群落结构的影响[J]. 应用生态学报, 2017, 28(3): 957-965. [25] CAO X N, LIU S C, WANG J J, et al. Soil bacterial diversity changes in different broomcorn millet intercropping systems[J]. Journal of Basic Microbiology, 2017, 57(12): 989-997. [26] YANG Z P, YANG W P, LI S C, et al. Variation of bacterial community diversity in rhizosphere soil of sole-cropped versus intercropped wheat field after harvest[J]. Plos One, 2016, 11(3): e0150618. [27] 葛艺,徐绍辉,徐艳. 根际微生物组构建的影响因素研究进展[J]. 浙江农业学报,2019,31(12): 2120- 2130. [28] 杨智仙, 汤利, 郑毅, 等. 不同品种小麦与蚕豆间作对蚕豆枯萎病发生、根系分泌物和根际微生物群落功能多样性的影响[J]. 植物营养与肥料学报, 2014, 20(3): 570-579. [29] GRANZOW S, KAISER K, WEMHEUER B, et al. The effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment[J]. Frontiers in Microbiology, 2017, 8: 902. [30] 瓮巧云, 黄新军, 许翰林, 等. 玉米/大豆间作模式对青贮玉米产量、品质及土壤营养、根际微生物的影响[J]. 核农学报, 2021, 35(2): 462-470. [31] 陈雪, 赵克明. 土传病害生物防治微生物的研究进展[J]. 现代农业, 2011, 7: 34-35. [32] 林英,王纪章,赵青松,等. 堆肥对植物土传病害抑制作用研究进展[J]. 江苏农业科学,2014,42(12): 168-171. [33] BORRERO C, TRILLAS M I, ORDOVáS J, et al. Predictive factors for the suppression of Fusarium Wilt of tomato in plant growth media[J]. Phytopathology, 2004, 94(10): 1094-1101. [34] 梁建根, 施跃峰, 竺利红. 植物根围促生细菌作用机制的研究[J]. 现代农业科技, 2008, 487(17): 133-135. [35] 刘长征, 周良云, 廖沛然, 等. 何首乌-穿心莲间作对何首乌根际土壤放线菌群落结构和多样性的影响[J]. 中国中药杂志, 2020, 45(22): 5452-5458. [36] 滕飞, 陈惠哲, 蔡雪青, 等. 不同水稻品种混合种植研究进展[J]. 杂交水稻, 2014, 29(4): 1-5. [37] FRAVEL D, OLIVAIN C, ALABOUVETTE C. Fusarium oxysporum and its biocontrol[J]. New Phytologist, 2003, 157: 493-502. [38] 朱有勇, 陈海如, 范静华, 等. 利用水稻品种多样性控制稻瘟病研究[J]. 中国农业科学, 2003, 36(5): 521-527. [39] KANNOJIA P, CHOUDHARY K K, SRIVASTAVA A K, et al. PGPR bioelicitors: induced systemic resistance (ISR) and proteomic perspective on biocontrol [M]// PGPR Amelioration in Sustainable Agriculture. England; Woodhead Publishing, 2019: 67-84. [40] 侯慧, 董坤, 杨智仙, 等. 间作系统根-土互作与连作障碍缓解机制[J]. 中国农学通报, 2016, 32(29): 105-112. [41] 邵梅, 杜魏甫, 许永超, 等. 魔芋玉米间作魔芋根际土壤尖孢镰孢菌和芽孢杆菌种群变化研究[J]. 云南农业大学学报, 2014, 29(6): 828-833. [42] GU Y H, MAZZOLA M. Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner[J]. Applied Soil Ecology, 2003, 24(1): 57-72. [43] 田晴, 高丹美, 李慧, 等. 小麦根系分泌物对西瓜连作土壤真菌群落结构的影响[J]. 中国农业科学, 2020, 53(5): 1018-1028. [44] 罗巧玉, 王晓娟, 李媛媛, 等. AM真菌在植物病虫害生物防治中的作用机制[J]. 生态学报, 2013, 33(19): 5997-6005. [45] POZO M A J, AZCO′N-AGUILAR C N, DUMAS-GAUDOT E, et al. β-1,3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or phytophthora parasitica and their possible involvement in bioprotection[J]. Plant Science, 1999, 141: 149-157. [46] LIOUSSANNE L, JOLICOEUR M, ST-ARNAUD M. Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen phytophthora nicotianae[J]. Soil Biology and Biochemistry, 2008, 40(9): 2217-2224. [47] HAGE-AHMED K, KRAMMER J, STEINKELL-NER S. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato[J]. Mycorrhiza, 2013, 23(7): 543-550. [48] 赵第锟. 丛枝菌根对旱作水稻/西瓜间作系统中西瓜枯萎病的影响[D]. 南京: 南京农业大学, 2011. [49] MILNER J L, SILO-SUH L, LEE J C, et al. Production of kanosamine by Bacillus cereus UW85[J]. Applied and Environmental Microbiology, 1996, 62(8): 3061-3065. [50] BERENDSEN R L, PIETERSE C M, BAKKER P A. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478-486. [51] LIU Y X, LI X, CAI K, et al. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms[J]. Applied Soil Ecology, 2015, 93: 78-87. [52] MENDES R, KRUIJT M, DE BRUIJN I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria [J]. Science,2011, 332(6033): 1097-1100. [53] 陈玲, 董坤, 杨智仙, 等. 连作障碍中化感自毒效应及间作缓解机理[J]. 中国农学通报, 2017, 33(8): 91-98. [54] ZHANG S S, JIN Y L, ZHU W J, et al. Baicalin released from scutellaria baicalensis induces autotoxicity and promotes soilborn pathogens[J]. Journal of Chemical Ecology, 2010, 36: 329-338. [55] HUANG L F, SONG L X, XIA X J, et al. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture[J]. Journal of Chemical Ecology, 2013, 39(2): 232-242. [56] 李培栋, 王兴祥, 李奕林, 等. 连作花生土壤中酚酸类物质的检测及其对花生的化感作用[J]. 生态学报, 2010, 30(8): 2128-2134. [57] ZHOU X G, WU F Z. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.sp. cucumerinum Owen[J]. Plos One, 2012, 7(10): e48288. [58] QU X H, WANG J G. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity[J]. Applied Soil Ecology, 2008, 39(2): 172-179. [59] DAI C C, CHEN Y, WANG X X, et al. Effects of intercropping of peanut with the medicinal plant atractylodes lancea on soil microecology and peanut yield in subtropical China[J]. Agroforest System, 2013, 87: 417-426. [60] 杨瑞秀, 高增贵, 姚远, 等. 甜瓜根系分泌物中酚酸物质对尖孢镰孢菌的化感效应[J]. 应用生态学报, 2014, 25(8): 2255-2360. [61] 郑倩, 李俊华, 危常州, 等. 不同抗性棉花品种根系分泌物及酚酸类物质对黄萎病菌的影响[J]. 棉花学报, 2012, 14(4): 363-369. [62] PIETERSE C M,ZAMIOUDIS C,BERENDSEN R L, et al. Induced systemic resistance by beneficial microbes[J]. Annual Review of Phytopathology, 2014, 52: 347-375. [63] VAN WEES S C, VAN DER ENT S, PIETERSE C M. Plant immune responses triggered by beneficial microbes[J]. Current Opinion in Plant Biology, 2008, 11(4): 443-448. [64] NIU D D, LIU H X, JIANG C H, et al. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways[J]. Molecular Plant-Microbe Interactions, 2011, 24(5): 533-542. [65] ALTINOK H H, YILDIZ H N. Induced systemic resistance by plant growth-promoting rhizobacteria in control of plant disease[J]. Current Trends in Natural Sciences, 2019, 8(16): 125-133. [66] CHEN Y, BONKOWSKI M, SHEN Y, et al. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants[J]. Microbiome, 2020, 8(1): 4. [67] DING X P, YANG M, HUANG H C, et al. Priming maize resistance by its neighbors: activating 1,4-benzoxazine-3-ones synthesis and defense gene expression to alleviate leaf disease[J]. Frontiers in Plant Science, 2015, 6: 830. [68] 刘晓光, 高克祥, 康振生, 等. 生防菌诱导植物系统抗性及其生化和细胞学机制[J]. 应用生态学报, 2007, 18(8): 1861-1868.