|本期目录/Table of Contents|

[1]杨 阳,姚槐应*.间作下根际微生物控制土传病害的研究进展[J].武汉工程大学学报,2021,43(04):381-390.[doi:10.19843/j.cnki.CN42-1779/TQ.202101007]
 YANG Yang,YAO Huaiying*,Progress in Control of Soil-Borne Diseases by Rhizosphere Microorganisms Under Intercropping[J].Journal of Wuhan Institute of Technology,2021,43(04):381-390.[doi:10.19843/j.cnki.CN42-1779/TQ.202101007]
点击复制

间作下根际微生物控制土传病害的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年04期
页码:
381-390
栏目:
化学与化学工程
出版日期:
2021-08-31

文章信息/Info

Title:
Progress in Control of Soil-Borne Diseases by Rhizosphere Microorganisms Under Intercropping
文章编号:
1674 - 2869(2021)04 - 0381 - 010
作者:
杨 阳1姚槐应*1 2
1. 武汉工程大学环境生态与生物工程学院,湖北 武汉 430205;2. 中国科学院城市环境研究所,福建 厦门 361021
Author(s):
YANG Yang1YAO Huaiying*1 2
1. School of Environmental Ecology and Biological Engineering,Wuhan Institute of Technology,Wuhan 430205,China; 2. Institute of Urban Environment,Chinese Academy of Sciences,Xiamen 361021, China
关键词:
间作根际微生物抗病机理拮抗作用生态位竞争自毒作用酚酸类物质
Keywords:
intercroppingrhizosphere microorganismdisease-resistant mechanismantagonismniche competition autotoxicity phenolic acid
分类号:
S154.36
DOI:
10.19843/j.cnki.CN42-1779/TQ.202101007
文献标志码:
A
摘要:
为了解根际微生物在间作模式下有效控制土传病害的作用和机理,综述了间作系统对于根际微生物群落结构和代谢功能的影响,介绍了间作作物组合、作物品种选择和间作方式对根际微生物群落的影响,并从养分和宿主感染位点竞争、生防微生物的拮抗作用、植物化感自毒作用的缓解以及植物诱导系统抗性四个方面总结了与根际微生物相关的间作抗病机理。最后,讨论了现阶段间作抗病研究的局限性并对今后的研究方向进行了展望。
Abstract:
To understand effects and mechanisms of rhizosphere microorganism controlling soilborne diseases under intercropping system, the effects of intercropping on rhizosphere microbial community structure and metabolic functions were reviewed, and the effects of intercropping management methods, including plant combination, crop variety, and intercropping method, were also introduced. Then, the intercropping mechanisms of rhizosphere microorganisms were summarized into four main aspects: the competition of nutrient and host infection site, the antagonism of biocontrol microorganisms, mitigation of plant allelopathic autotoxicity, and stimulation of induced systemic resistance. Finally, the limitations of the research on disease control by intercropping were discussed and the future development directions were prospected.

参考文献/References:

[1] FEDERER W T. Statistical design and analysis for intercropping experiments volume I: two crops [M]. New York : Springer-Verlag New York, 1993. [2] LI Q S, CHEN J, WU L K, et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems[J]. International Journal of Molecular Sciences, 2018, 19(2): 622. [3] LI C X, TIAN Q, RAHMAN M K U, et al. Effect of anti-fungal compound phytosphingosine in wheat root exudates on the rhizosphere soil microbial community of watermelon[J]. Plant and Soil,2020,456:223-240. [4] REN L X, HUO H W, ZHANG F, et al. The components of rice and watermelon root exudates and their effects on pathogenic fungus and watermelon defense[J]. Plant Signaling and Behavior, 2016, 11(6): e1187357. [5] GAO X, WU M, XU R N, et al. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot[J]. Plos One, 2014, 9(5): e95031. [6] ZHU S, MOREL J B. Molecular mechanisms underlying microbial disease control in intercropping[J]. Molecular Plant-Microbe Interactions, 2019, 32(1): 20-24. [7] DONG L L, LI X L, HUANG L, et al. Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection[J]. Journal of Experimental Botany, 2014, 65(1): 131-141. [8] 刘瑜, 疏再发, 邵静娜, 等. 茶园间作对病虫害防控效应与作用机制研究进展[J]. 茶叶通讯, 2021, 48(1): 7-14. [9] 付学鹏, 吴凤芝, 周新刚. 间作防控作物土传病害的机理研究进展[J]. 江苏农业科学, 2016, 44(1): 16-20. [10] 覃潇敏, 郑毅, 汤利, 等. 玉米与马铃薯间作对根际微生物群落结构和多样性的影响[J]. 作物学报, 2015, 41(6): 919-928. [11] LI N H, GAO D M, ZHOU X G, et al. Intercropping with potato-onion enhanced the soil microbial diversity of tomato[J]. Microorganisms, 2020, 8(6): 834. [12] ZHOU L J, WANG Y J, XIE Z K, et al. Effects of lily/maize intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor[J]. Journal of Basic Microbiology, 2018, 58(10): 892-901. [13] 董宇飞, 吕相漳, 张自坤, 等. 不同栽培模式对辣椒根际连作土壤微生物区系和酶活性的影响[J]. 浙江农业学报, 2019, 31(9): 1485-1492. [14] 吴凤芝, 周新刚. 不同作物间作对黄瓜病害及土壤微生物群落多样性的影响[J]. 土壤学报, 2009, 46(5): 899-906. [15] 苏世呜, 任丽轩, 霍振华, 等. 西瓜与旱作水稻间作改善西瓜连作障碍及对土壤微生物区系的影响[J]. 中国农业科学, 2008, 41(3): 704-712. [16] WU H M, LIN M H, RENSING C, et al. Plant-mediated rhizospheric interactions in intraspecific intercropping alleviate the replanting disease of Radix pseudostellariae[J]. Plant Soil,2020,454(1/2): 411-430. [17] 曹云, 马艳. 间套作防治作物土传枯萎病的研究进展[J]. 土壤, 2015, 47(3): 466-473. [18] 刘烈花, 董鹏, 李姗蓉, 等. 辣椒青枯病罹病与健康植株根际土壤微生物群落多样性研究[J]. 植物医生, 2021, 34(1): 41-47. [19] 董艳, 董坤, 杨智仙, 等. 间作减轻蚕豆枯萎病的微生物和生理机制[J]. 应用生态学报, 2016, 27(6): 1984-1992. [20] WAHBI S, PRIN Y, THIOULOUSE J, et al. Impact of wheat/faba bean mixed cropping or rotation systems on soil microbial functionalities[J]. Frontiers in Plant Science, 2016, 7: 1364. [21] 马玲, 马琨, 汤梦洁, 等. 间作与接种AMF对连作土壤微生物群落结构与功能的影响[J]. 生态环境学报, 2013, 22(8): 1341-1347. [22] LIAN T X, MU Y H, JIN J, et al. Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies[J]. Peerj, 2019, 7: e6412. [23] GUO F, WANG M L, SI T, et al. Maize-peanut intercropping led to an optimization of soil from the perspective of soil microorganism[J]. Archives of Agronomy and Soil Science, 2020, 66(14):1-14. [24] 杨亚东, 冯晓敏, 胡跃高, 等. 豆科作物间作燕麦对土壤固氮微生物丰度和群落结构的影响[J]. 应用生态学报, 2017, 28(3): 957-965. [25] CAO X N, LIU S C, WANG J J, et al. Soil bacterial diversity changes in different broomcorn millet intercropping systems[J]. Journal of Basic Microbiology, 2017, 57(12): 989-997. [26] YANG Z P, YANG W P, LI S C, et al. Variation of bacterial community diversity in rhizosphere soil of sole-cropped versus intercropped wheat field after harvest[J]. Plos One, 2016, 11(3): e0150618. [27] 葛艺,徐绍辉,徐艳. 根际微生物组构建的影响因素研究进展[J]. 浙江农业学报,2019,31(12): 2120- 2130. [28] 杨智仙, 汤利, 郑毅, 等. 不同品种小麦与蚕豆间作对蚕豆枯萎病发生、根系分泌物和根际微生物群落功能多样性的影响[J]. 植物营养与肥料学报, 2014, 20(3): 570-579. [29] GRANZOW S, KAISER K, WEMHEUER B, et al. The effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment[J]. Frontiers in Microbiology, 2017, 8: 902. [30] 瓮巧云, 黄新军, 许翰林, 等. 玉米/大豆间作模式对青贮玉米产量、品质及土壤营养、根际微生物的影响[J]. 核农学报, 2021, 35(2): 462-470. [31] 陈雪, 赵克明. 土传病害生物防治微生物的研究进展[J]. 现代农业, 2011, 7: 34-35. [32] 林英,王纪章,赵青松,等. 堆肥对植物土传病害抑制作用研究进展[J]. 江苏农业科学,2014,42(12): 168-171. [33] BORRERO C, TRILLAS M I, ORDOVáS J, et al. Predictive factors for the suppression of Fusarium Wilt of tomato in plant growth media[J]. Phytopathology, 2004, 94(10): 1094-1101. [34] 梁建根, 施跃峰, 竺利红. 植物根围促生细菌作用机制的研究[J]. 现代农业科技, 2008, 487(17): 133-135. [35] 刘长征, 周良云, 廖沛然, 等. 何首乌-穿心莲间作对何首乌根际土壤放线菌群落结构和多样性的影响[J]. 中国中药杂志, 2020, 45(22): 5452-5458. [36] 滕飞, 陈惠哲, 蔡雪青, 等. 不同水稻品种混合种植研究进展[J]. 杂交水稻, 2014, 29(4): 1-5. [37] FRAVEL D, OLIVAIN C, ALABOUVETTE C. Fusarium oxysporum and its biocontrol[J]. New Phytologist, 2003, 157: 493-502. [38] 朱有勇, 陈海如, 范静华, 等. 利用水稻品种多样性控制稻瘟病研究[J]. 中国农业科学, 2003, 36(5): 521-527. [39] KANNOJIA P, CHOUDHARY K K, SRIVASTAVA A K, et al. PGPR bioelicitors: induced systemic resistance (ISR) and proteomic perspective on biocontrol [M]// PGPR Amelioration in Sustainable Agriculture. England; Woodhead Publishing, 2019: 67-84. [40] 侯慧, 董坤, 杨智仙, 等. 间作系统根-土互作与连作障碍缓解机制[J]. 中国农学通报, 2016, 32(29): 105-112. [41] 邵梅, 杜魏甫, 许永超, 等. 魔芋玉米间作魔芋根际土壤尖孢镰孢菌和芽孢杆菌种群变化研究[J]. 云南农业大学学报, 2014, 29(6): 828-833. [42] GU Y H, MAZZOLA M. Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner[J]. Applied Soil Ecology, 2003, 24(1): 57-72. [43] 田晴, 高丹美, 李慧, 等. 小麦根系分泌物对西瓜连作土壤真菌群落结构的影响[J]. 中国农业科学, 2020, 53(5): 1018-1028. [44] 罗巧玉, 王晓娟, 李媛媛, 等. AM真菌在植物病虫害生物防治中的作用机制[J]. 生态学报, 2013, 33(19): 5997-6005. [45] POZO M A J, AZCO′N-AGUILAR C N, DUMAS-GAUDOT E, et al. β-1,3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or phytophthora parasitica and their possible involvement in bioprotection[J]. Plant Science, 1999, 141: 149-157. [46] LIOUSSANNE L, JOLICOEUR M, ST-ARNAUD M. Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen phytophthora nicotianae[J]. Soil Biology and Biochemistry, 2008, 40(9): 2217-2224. [47] HAGE-AHMED K, KRAMMER J, STEINKELL-NER S. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato[J]. Mycorrhiza, 2013, 23(7): 543-550. [48] 赵第锟. 丛枝菌根对旱作水稻/西瓜间作系统中西瓜枯萎病的影响[D]. 南京: 南京农业大学, 2011. [49] MILNER J L, SILO-SUH L, LEE J C, et al. Production of kanosamine by Bacillus cereus UW85[J]. Applied and Environmental Microbiology, 1996, 62(8): 3061-3065. [50] BERENDSEN R L, PIETERSE C M, BAKKER P A. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478-486. [51] LIU Y X, LI X, CAI K, et al. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms[J]. Applied Soil Ecology, 2015, 93: 78-87. [52] MENDES R, KRUIJT M, DE BRUIJN I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria [J]. Science,2011, 332(6033): 1097-1100. [53] 陈玲, 董坤, 杨智仙, 等. 连作障碍中化感自毒效应及间作缓解机理[J]. 中国农学通报, 2017, 33(8): 91-98. [54] ZHANG S S, JIN Y L, ZHU W J, et al. Baicalin released from scutellaria baicalensis induces autotoxicity and promotes soilborn pathogens[J]. Journal of Chemical Ecology, 2010, 36: 329-338. [55] HUANG L F, SONG L X, XIA X J, et al. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture[J]. Journal of Chemical Ecology, 2013, 39(2): 232-242. [56] 李培栋, 王兴祥, 李奕林, 等. 连作花生土壤中酚酸类物质的检测及其对花生的化感作用[J]. 生态学报, 2010, 30(8): 2128-2134. [57] ZHOU X G, WU F Z. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.sp. cucumerinum Owen[J]. Plos One, 2012, 7(10): e48288. [58] QU X H, WANG J G. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity[J]. Applied Soil Ecology, 2008, 39(2): 172-179. [59] DAI C C, CHEN Y, WANG X X, et al. Effects of intercropping of peanut with the medicinal plant atractylodes lancea on soil microecology and peanut yield in subtropical China[J]. Agroforest System, 2013, 87: 417-426. [60] 杨瑞秀, 高增贵, 姚远, 等. 甜瓜根系分泌物中酚酸物质对尖孢镰孢菌的化感效应[J]. 应用生态学报, 2014, 25(8): 2255-2360. [61] 郑倩, 李俊华, 危常州, 等. 不同抗性棉花品种根系分泌物及酚酸类物质对黄萎病菌的影响[J]. 棉花学报, 2012, 14(4): 363-369. [62] PIETERSE C M,ZAMIOUDIS C,BERENDSEN R L, et al. Induced systemic resistance by beneficial microbes[J]. Annual Review of Phytopathology, 2014, 52: 347-375. [63] VAN WEES S C, VAN DER ENT S, PIETERSE C M. Plant immune responses triggered by beneficial microbes[J]. Current Opinion in Plant Biology, 2008, 11(4): 443-448. [64] NIU D D, LIU H X, JIANG C H, et al. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways[J]. Molecular Plant-Microbe Interactions, 2011, 24(5): 533-542. [65] ALTINOK H H, YILDIZ H N. Induced systemic resistance by plant growth-promoting rhizobacteria in control of plant disease[J]. Current Trends in Natural Sciences, 2019, 8(16): 125-133. [66] CHEN Y, BONKOWSKI M, SHEN Y, et al. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants[J]. Microbiome, 2020, 8(1): 4. [67] DING X P, YANG M, HUANG H C, et al. Priming maize resistance by its neighbors: activating 1,4-benzoxazine-3-ones synthesis and defense gene expression to alleviate leaf disease[J]. Frontiers in Plant Science, 2015, 6: 830. [68] 刘晓光, 高克祥, 康振生, 等. 生防菌诱导植物系统抗性及其生化和细胞学机制[J]. 应用生态学报, 2007, 18(8): 1861-1868.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-01-14基金项目:国家自然科学基金(41976151);国家自然科学基金杰青项目(41525002)作者简介:杨 阳,硕士研究生。E-mail:[email protected]*通讯作者:姚槐应,博士,教授,博士研究生导师。E-mail:[email protected]引文格式:杨阳, 姚槐应. 间作下根际微生物控制土传病害的研究进展[J]. 武汉工程大学学报,2021,43(4):381-390.
更新日期/Last Update: 2021-08-07