[1] DAI S L, HE S D, WANG M, et al. Adaptive neural control of underactuated surface vessels with prescribed performance guarantees [J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(12): 3686-3698. [2] YU Y J, YANG Z H, HAN C, et al. Fuzzy adaptive back-stepping sliding mode controller for high-precision deflection control of the magnetically suspended momentum wheel [J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3530-3538. [3] NOURMOHAMMADI A, JAFARI M, ZANDER T O. A survey on unmanned aerial vehicle remote control using brain-computer interface [J]. IEEE Transactions on Human-Machine Systems, 2018, 48(4): 337-348. [4] RYALAT M, LAILA D S. A robust IDA-PBC approach for handling uncertainties in underactuated mechanical systems [J]. IEEE Transactions on Automatic Control, 2018, 63(10): 3495-3502. [5] WU J D, YE W J, WANG Y W, et al. A general position control method for planar underactuated manipulators with second order nonholonomic constraints [J]. IEEE Transactions on Cybernetics, 2019, DOI: 10.1109/TCYB.2019.2951861. [6] HUANG Z X, LAI X Z, ZHANG P, et al. A general position control strategy for a planar 3-DoF underactuated manipulators with one passive joint [J]. Information Sciences, 2020, 534:139-153. [7] ZHANG A C, SHE J H, QIU J L, et al. A new control method for global stabilization of translational oscillator with rotational actuator [J]. International Journal of Systems Science, 2019, 50(5): 954-960. [8] LAI X Z, WANG Y W, CAO J Q, et al. A simple and quick control strategy for a class of first-order nonholonomic manipulator [J]. Nonlinear Dynamics, 2016, 85(4): 2261-2276. [9] 张立勋, 邹宇鹏, 隋立明, 等. 宇航员康复训练机器人自抗扰力控制 [J]. 机器人, 2012, 34(2): 217-222. [10] 齐乃明, 张文辉, 马静, 等. 空间微重力地面模拟试验系统智能控制器设计 [J]. 哈尔滨工业大学学报, 2012, 44(1): 17-21. [11] WANG Y W, LAI X Z, CHEN L F, et al. A quick control strategy based on hybrid intelligent optimization algorithm for planar n-link underactuated manipulators[J]. Information Sciences, 2017, 420: 148-158. [12] ZHANG A C, SHE J H, QIU J L, et al. Design of motion trajectory and tracking control for underactuated cart-pendulum system[J]. International Journal of Robust and Nonlinear Control, 2019, 29(8): 2458-2470. [13] 潘昌忠, 罗晶, 周兰, 等. 基于免疫优化的平面Acrobot线性自抗扰鲁棒镇定 [J]. 控制与决策,2020, 35(12): 3503-3508.[14] 张安彩, 赖旭芝, 佘锦华, 等. 基于倒转方法的欠驱动Acrobot系统稳定控制[J]. 自动化学报, 2012, 38(8): 1263-1269.[15] 曹胜强, 赖旭芝, 吴敏. 基于平面Acrobot轨迹特性的运动控制方法[C]//第31届中国控制会议, 合肥:2012: 4910-4915. [16] LAI X Z, SHE J H, CAO W H, et al. Stabilization of underactuated planar acrobot based on motion-state constraints [J]. International Journal of Non-Linear Mechanics, 2015, 77:342-347. [17] 郑艳, 郑秀萍, 褚俊霞, 等. 基于T-S模型的体操机器人系统模糊变结构控制 [J]. 控制与决策 , 2006, 21(1): 34-37.[18] 王亚午, 赖旭芝, 吴敏. 基于可变设计参数的平面Acrobot位置快速控制方法 [J]. 电机与控制学报, 2017, 21(9): 110-118. [19] 盛洋, 赖旭芝, 吴敏. 基于模型降阶的平面三连杆欠驱动机械系统位置控制 [J]. 自动化学报, 2014, 40(7): 1303-1310. [20] LAI X Z, WANG Y W, WU M, et al. Stable control strategy for planar three-link underactuated mechanical system [J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1345-1356. [21] ZHANG P, LAI X Z, WANG Y W, et al. A novel position-posture control method using intelligent optimization for planar underactuated mechanical systems [J]. Mechanism and Machine Theory, 2019, 140: 258-273. [22] ZHANG P, LAI X Z, WANG Y W, et al. Effective position-posture control strategy based on switching control for planar three-link underactuated mechanical system [J]. International Journal of Systems Science, 2017, 48(10): 2202-2211. [23] LAI X Z, ZHANG P, WANG Y W, et al. Continuous state feedback control based on intelligent optimization for first-order nonholonomic systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(7): 2534-2540. [24] ZHANG P, LAI X Z, WANG Y W, et al. A quick position control strategy based on optimization algorithm for a class of first-order nonholonomic system [J]. Information Sciences, 2018,460/461: 264-278. [25] ZHANG P, LAI X Z, WANG Y W, et al. Motion planning and adaptive neural sliding mode tracking control for positioning of uncertain planar underactuated manipulator [J]. Neurocompting, 2019, 334: 197-205. [26] LAI X Z, ZHANG P, WANG Y W, et al. Position-posture control of a planar four-link underactuated manipulator based ongenetic algorithm [J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4781-4791. [27] WANG Y W, LAI X Z, ZHANG P, et al. A new control method for planar four-link underactuated manipulator based on intelligence optimization [J]. Nonlinear Dynamics, 2019,96(1): 573-583. [28] WANG Y W, LAI X Z, ZHANG P, et al. Adaptive robust control for planar n-link underactuated manipulator based on radial basis function neural network and online iterative correction method [J]. Journal of the Franklin Institute, 2018, 355(17):8373-8391. [29] LUCA A D, MATTONE R, ORIOLO G. Stabilization of underactuated robots: theory and experiments for a planar 2R manipulator [C]// IEEE International Conference on Robotics and Automation, Albuquerque:1997: 3274-3280. [30] LUCA A D, MATTONE R, ORIOLO G. Stabilization of an underactuated planar 2R manipulator [J]. International Journal of Robust and Nonlinear Control, 2000, 10(4): 181-198. [31] HE G P, WANG Z L, ZHANG J, et al. Characteristics analysis and stabilization of a planar 2R underactuated manipulator [J]. Robotica, 2016, 34(3): 584-600. [32] SUZUKI T, NAKAMURA Y. Control of manipulators with free-joints via the averaging method [C]// IEEE International Conference on Robotics and Automation, Albuquerque:1997: 2998-3005. [33] ROSAS-FLORS J A, ALVAREZ-GELLEGOS J, CASTRO-LINARES R. Trajectory planning and control of an underactuated planar 2R manipulator [C]// IEEE International Conference on Control Application, Mexico:2001: 548-552. [34] WU J D, WANG Y W, YE W J, et al. Control strategy based on Fourier transformation and intelligent optimization for planar Pendubot [J]. Information Sciences, 2019, 491: 279-288. [35] ARAI H, TANIE K, SHIROMA N. Nonholonomic control of a three-DOF planar underactuated manipulator [J]. IEEE Transactions on Robotics and Automation, 1998, 14(5): 681-695. [36] LUCA A D, ORIOLO G. Motion planning and trajectory control of an underactuated three-link robot via dynamic feedback linearization [C]// IEEE International Conference on Robotics and Automation. San Francisco:2000: 2789-2795. [37] 刘庆波,余跃庆,苏丽颖. 欠驱动机器人最优运动轨迹生成与跟踪控制 [J]. 机械工程学报,2009,45(12): 15-21. [38] 何广平,陆震,王凤翔. 平面三连杆欠驱动机械臂谐波函数控制方法 [J]. 航空学报,2004,25(5): 520-524. [39] 任志全, 余跃庆, 周军. 水平运动的三自由度欠驱动机器人的位置控制 [J]. 机器人, 2010, 32(6): 741-748. [40] 吴方朋, 余跃庆. 平面三自由度欠驱动机器人末端的位置控制[J]. 组合机床与自动化加工技术, 2016(8):111-114. [41] KOBAYASHI K, YOSHIKAWA T. Controllability of under-actuated planar manipulators with one unactuated joint[J]. International Journal of Robotics Research, 2002, 21(5-6): 555-561. [42] LUCA A D, ORIOLO G. Trajectory planning and control for planar robots with passive last joint [J]. International Journal of Robotics Research,2002, 21(5/6): 575-590. [43] HUANG Z X, LAI X Z, ZHANG P, et al. Virtual model reduction-based control strategy of planar three-link underactuated manipulator with middle passive joint [J]. International Journal of Control, Automation, and System, 2021, 19(1):29-39. [44] 黄自鑫, 赖旭芝, 王亚午, 等. 二阶非完整平面3R欠驱动机械臂位置控制 [J]. 东南大学学报(自然科学版),2019, 49(2): 245-250. [45] 黄自鑫, 赖旭芝, 王亚午, 等. 基于轨迹规划的平面三连杆欠驱动机械臂位置控制 [J]. 控制与决策, 2020, 35(2): 382-388. [46] 熊培银, 赖旭芝, 吴敏. 基于模型退化的平面四连杆欠驱动机械系统位置控制 [J]. 控制与决策, 2015, 30(7): 1277-1283. [47] XIONG P Y, LAI X Z, WU M. A stable control for second-order nonholonomic planar underactuated mechanical system: energy attenuation approach [J]. International Journal of Control,2018, 91(7): 1630-1639. [48] 熊培银, 赖旭芝, 吴敏. 一类二阶非完整平面欠驱动机械系统位姿控制 [J]. 东南大学学报(自然科学版), 2015, 45(4): 690-695. [49] XIONG P Y, LAI X Z, WU M. Position and posture control for a class of second-order nonholonomic underactuated mechanical system [J]. IMA Journal of Mathematical Control and Information,2016,35(2): 523-533. [50] LIU D, LAI X Z, WANG Y W, et al. Position control forplanar four-link underactuated manipulator with a passive third joint [J]. ISA Transections, 2019, 87: 46-54.