[1] LI G, ZHU R, YANG Y. Polymer solar cells [J]. Nature Photonics,2012,6(3):153-161. [2] GU X D, ZHOU Y, GU K, et al. Roll-to-roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend [J]. Advanced Energy Materials,2017,7(14):1602742:1-13. [3] HOU J H,INGAN?S O,FRIEND H R,et al. Organic solar cells based on non-fullerene acceptors [J]. Nature Materials,2018,17(2):119-128. [4] FUKUDA K, YU K, SOMEYA T. The future of flexible organic solar cells [J]. Advanced Energy Materials,2020,10(25):2000765:1-10. [5] WANG G D,ADIL M A,ZHANG J Q,et al. Large-area organic solar cells: material requirements, modular designs, and printing methods [J]. Advanced Materials,2019,31(45):1805089:1-34. [6] LUO Z H,MA R J,LIU T,et al. Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17% [J]. Joule,2020,4(6):1236-1247. [7] CUI Y,YAO H F,HONG L,et al. Organic photovoltaic cell with 17% efficiency and superior processability [J]. National Science Review,2020,7(7):1239-1246. [8] FU H T,WANG Z H,SUN Y M. Polymer donors for high-performance non-fullerene organic solar cells [J]. Angewandte Chemie(International Edition),2019,58(14):4442-4453. [9] NORIEGA R, RIVNAY J, VANDEWAL K, et al. A general relationship between disorder,aggregation and charge transport in conjugated polymers [J]. Nature Materials,2013,12(11):1038-1044. [10] O’CONNOR B, CHAN P E, CHAN C, et al. Correlations between mechanical and electrical properties of polythiophenes [J]. ACS Nano,2010,4(12):7538-7544. [11] TARONI P J,SANTAGIULIANA G,WAN K N,et al. Toward stretchable self-powered sensors based on the thermoelectric response of PEDOT:PSS/polyurethane blends [J]. Advanced Functional Materials,2018,28(15):1704285:1-7. [12] LU C,LEE W Y,GU X D,et al. Effects of molecular structure and packing order on the stretchability of semicrystalline conjugated poly(tetrathienoacene- diketopyrrolopyrrole) polymers [J]. Advanced Electronic Materials,2017,3(2):1600311:1-13. [13] OCHEJE U M,CHARRON B P, NYAYACHAVADI A,et al. Stretchable electronics:recent progress in the preparation of stretchable and self-healing semiconducting conjugated polymers [J]. Flexible and Printed Electronics,2017,2(4):043002:1-34. [14] WU H C, HUNG C C, HONG C W,et al. Isoindigo-based semiconducting polymers using carbosilane side chains for high performance stretchable field-effect transistors [J]. Macromolecules,2016,49(22):8540-8548. [15] SHIN M, OH J Y, BYUN K E,et al. Polythiophene nanofibril bundles surface-embedded in elastomer:a route to a highly stretchable active channel layer [J]. Advanced Materials,2015,27(7):1255-1261. [16] ZHANG X R,BRONSTEIN H,KRONEMEIJER A J,et al. Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer [J]. Nature Communications,2013,4(1):2238:1-9. [17] VENKATESHVARAN D, NIKOLKA M,SADHANALA A,et al. Approaching disorder-free transport in high-mobility conjugated polymers [J]. Nature,2014,515(7527):384-388. [18] MELENBRINK E L, HILBY K M,CHOUDHARY K,et al. Influence of acceptor side-chain length and conjugation-break spacer content on the mechanical and electronic properties of semi-random polymers [J]. ACS Applied Polymer Materials,2019,1(5):1107-1117. [19] AIVALI S, ANASTASOPOULOS C, ANDREO-POULOU A K,et al. A "rigid-flexible" approach for processable perylene diimide based polymers:influence of the specific architecture on the morphology,dielectric,optical and electronic properties [J]. The Journal of Physical Chemistry B,2020,124(24):5079-5090. [20] OH J Y, RONDEAU-GAGNé S, CHIU Y C, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors [J]. Nature,2016,539(7629):411-415. [21] ZHAO Y,ZHAO X K,ZANG Y P,et al. Conjugation-break spacers in semiconducting polymers:impact on polymer processability and charge transport properties [J]. Macromolecules,2015,48(7):2048-2053. [22] ZHAO X K,ZHAO Y,GE Q,et al. Complementary semiconducting polymer blends:the influence of conjugation-break spacer length in matrix polymers [J]. Macromolecules,2016,49(7):2601-2608. [23] QIAN D P, YE L, ZHANG M J, et al. Design, application,and morphology study of a new photovoltaic polymer with strong aggregation in solution state [J]. Macromolecules,2012,45(24):9611-9617. [24] ZHANG M J, GUO X, MA W, et al. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance [J]. Advanced Materials,2015,27(31):4655-4660. [25] ZHANG S Q, QIN Y P, ZHU J, et al. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor [J]. Advanced Materials,2018,30(20):1800868:1-7. [26] ZHENG Z, YAO H F, YE L, et al. PBDB-T and its derivatives:a family of polymer donors enables over 17% efficiency in organic photovoltaics [J]. Materials Today,2020,35:115-130.
[1]陈志力,高 翔*,刘治田.基于苯并[1,2-b:4,5-b’]二呋喃的宽带隙共轭聚合物的合成与光伏应用[J].武汉工程大学学报,2021,43(06):610.[doi:10.19843/j.cnki.CN42-1779/TQ.202103006]
CHEN Zhili,GAO Xiang*,LIU Zhitian.Synthesis and Photovoltaic Application of Wide Bandgap Conjugated Polymer Based on Benzo[1,2-b:4,5-b’]Bifuran[J].Journal of Wuhan Institute of Technology,2021,43(05):610.[doi:10.19843/j.cnki.CN42-1779/TQ.202103006]