|本期目录/Table of Contents|

[1]成鸿静,杨兆华,刘 辉,等.一锅法制备聚乙烯醇载银海绵及其催化性能[J].武汉工程大学学报,2021,43(06):616-621.[doi:10.19843/j.cnki.CN42-1779/TQ.202106018]
 CHENG Hongjing,YANG Zhaohua,LIU Hui,et al.Preparation of Silver Loaded Polyvinyl Alcohol Sponge by One-Pot Method and Its Catalytic Performance[J].Journal of Wuhan Institute of Technology,2021,43(06):616-621.[doi:10.19843/j.cnki.CN42-1779/TQ.202106018]
点击复制

一锅法制备聚乙烯醇载银海绵及其催化性能(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年06期
页码:
616-621
栏目:
材料科学与工程
出版日期:
2021-12-31

文章信息/Info

Title:
Preparation of Silver Loaded Polyvinyl Alcohol Sponge by One-Pot Method and Its Catalytic Performance
文章编号:
1674 - 2869(2021)06 - 0616 - 06
作者:
成鸿静杨兆华刘 辉杜飞鹏张云飞*
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
CHENG HongjingYANG ZhaohuaLIU HuiDU FeipengZHANG Yunfei*
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
一锅法聚乙烯醇海绵纳米银催化还原对硝基苯酚
Keywords:
one-pot method polyvinyl alcohol sponge silver nanoparticles catalytic reduction 4-nitrophenol
分类号:
TB34
DOI:
10.19843/j.cnki.CN42-1779/TQ.202106018
文献标志码:
A
摘要:
以水为溶剂、以聚乙烯醇(PVA)为还原剂和纳米银的载体,通过一锅法制备了一种聚乙烯醇载银(PVA/Ag)海绵并将其用于催化还原对硝基苯酚(4-NP)。采用扫描电子显微镜、傅里叶变换红外光谱、拉曼光谱、X射线衍射、热重分析分别表征了PVA/Ag海绵的形貌、组成与结构,并用紫外-可见光谱分析了其催化还原4-NP的性能。结果表明:一锅法制备的PVA/Ag海绵具有三维多孔结构,有效地抑制了纳米银颗粒的团聚,使得纳米银颗粒分布均匀,在4-NP还原中具有良好的催化性能。当4-NP的浓度为0.2 mmol/L时,载银量为2.2%的PVA/Ag海绵在14 min内完成催化,催化效率达到98%以上。因此,本文制得的PVA/Ag海绵具有制备简单、催化效率高等特点,在污水处理领域具有潜在应用前景。
Abstract:
Silver loaded polyvinyl alcohol (PVA/Ag) sponges were prepared by one-pot method using water as solvent, polyvinyl alcohol as reductant and carrier material,and were used for catalytic reduction of 4-nitrophenol(4-NP). The morphology,composition and structure of PVA/Ag sponges were characterized by scanning electron microscopy,Fourier transform infrared spectroscopy,Raman spectroscopy,X-ray diffraction and thermogravimetric analysis,respectively. Ultraviolet-visible spectroscopy was used to test the catalytic performances of PVA/Ag sponges in reduction of 4-NP. The results show that the PVA/Ag sponges have porous structures,which effectively inhibits the aggregation of silver nanoparticles and makes silver nanoparticles uniformly distribute in the sponges. The PVA/Ag sponges prepared exhibit excellent catalytic performance in the reduction of 4-NP. When the concentration of 4-NP is 0.2 mmol/L,2.2% silver loaded PVA/Ag sponges can complete the catalytic reaction within 14 min,and the catalytic efficiency is over 98%. Therefore,the PVA/Ag sponges have the advantages of simple preparation and high catalytic efficiency,which have potential application prospect in the field of wastewater treatment.

参考文献/References:

[1] ATAROD M, NASROLLAHZADEH M ,MOHAMMAD SAJADI S. Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withaniacoagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol [J]. Journal of Colloid and Interface Science,2016,465:249-258. [2] ZENG T, ZIEGELGRUBER K L, CHIN Y P, et al. Pesticide processing potential in prairie pothole porewaters [J]. Environmental Science & Technology,2011,45(16):6814-6822. [3] JADBABAEI N, SLOBODJIAN R J, SHUAI D M,et al. Catalytic reduction of 4-nitrophenol by palladium-resin composites [J]. Applied Catalysis A:General,2017,543:209-217. [4] GHANBARI N, HOSEINI S J, BAHRAMI M. Ultrasonic assisted synthesis of palladium-nickel/iron oxide core-shell nanoalloys as effective catalyst for Suzuki-Miyaura and p-nitrophenol reduction reactions [J]. Ultrasonics Sonochemistry,2017,39:467-477. [5] 成岳,潘顺龙,魏桂英. 水热合成silicalite-2分子筛及对对硝基苯酚的吸附与脱附性能[J]. 环境化学,2014,33(8):1404-1409. [6] ARORA P K,SRIVASTAVA A,SINGH V P. Bacterial degradation of nitrophenols and their derivatives [J]. Journal of Hazardous Materials,2014,266:42-59. [7] LIU Y Y,ZHAO Y H,ZHOU Y,et al. High-efficient catalytic reduction of 4-nitrophenol based on reusable Ag nanoparticles/graphene-loading loofah sponge hybrid [J]. Nanotechnology,2018,29(31):315702:1-12. [8] BANO M, AHIRWAR D, THOMAS M, et al. Hierarchical synthesis of silver monoliths and their efficient catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol [J]. New Journal of Chemistry,2016,40(8):6787-6795. [9] ?ZGüR D ?. Green synthesis of highly dispersed Ag nanoparticles on polydopamine-functionalized graphene oxide and their high catalytic reduction reaction [J]. Microporous and Mesoporous Materials,2021,314:110861:1-7. [10] LIANG M,SU R X,QI W,et al. Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol [J]. Journal of Materials Science,2014,49(4):1639-1647. [11] LAM E,HRAPOVIC S,MAJID E,et al. Catalysis using gold nanoparticles decorated on nanocrystalline cellulose [J]. Nanoscale,2012,4(3):997-1002. [12] LI Y Z, CAO Y L, XIE J, et al. Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol [J]. Catalysis Communications,2015,58:21-25. [13] ZHANG W J,ZHANG Z D,JIANG Y L,et al. Porous Fe@Fe3O4-C nanocomposite using polyvinyl alcohol sponge as template for microwave absorption [J]. Journal of Electronic Materials,2020,49(11):6394-6402. [14] MOHAMED M M, AL-SHARIF M S. Visible light assisted reduction of 4-nitrophenol to 4-aminophenol on Ag/TiO2 photocatalysts synthesized by hybrid templates [J]. Applied Catalysis B:Environmental,2013,142/143:432-441. [15] HEIDARI H. Ag nanoparticle/nanofibrillated cellulose composite as an effective and green catalyst for reduction of 4-nitrophenol [J]. Journal of Cluster Science,2018,29(3):475-481. [16] DAI X H,ZHANG S X,WATERHOUSE G I N,et al. Recyclable polyvinyl alcohol sponge containing flower-like layered double hydroxide microspheres for efficient removal of As(V) anions and anionic dyes from water [J]. Journal of Hazardous Materials,2019,367:286-292. [17] CHANG Y I, CHEN J W, CHENG W Y, et al. The reinforcement of the physical strength of PVA sponge through the double acetalization [J]. Separation and Purification Technology,2018,198:100-107. [18] 许婉馨,杨波,陈子伦,等. 聚乙烯醇海绵负载铑催化剂催化还原对硝基苯酚[J]. 环境化学,2020,39(9):2576-2583. [19] PAN Y X, SHI K, PENG C, et al. Evaluation of hydrophobic polyvinyl-alcohol formaldehyde sponges as absorbents for oil spill [J]. ACS Applied Materials & Interfaces,2014,6(11):8651-8659. [20] BAE H, YANG H, CHUNG Y C, et al. High-rate partial nitritation using porous poly(vinyl alcohol) sponge [J]. Bioprocess and Biosystems Engineering,2014,37(6):1115-1125. [21] GUO M M, ZHANG Y F, DU F P, et al. Silver nanoparticles/polydopamine coated polyvinyl alcohol sponge as an effective and recyclable catalyst for reduction of 4-nitrophenol [J]. Materials Chemistry and Physics,2019,225:42-49. [22] 张云飞,郭明明,杜飞鹏,等. 聚乙烯醇海绵负载纳米银复合材料的性能[J]. 实验室研究与探索,2019,38(6):42-44,53. [23] DURáN-GUERRERO J G, MARTíNEZRODRí-GUEZM A,GARZA-NAVARRO M A,et al. Magnetic nanofibrous materials based on CMC/PVA polymeric blends [J]. Carbohydrate Polymers,2018,200:289-296. [24] ABUDABBUS M M, JEVREMOVI? I,NE?OVI? K,et al. In situ electrochemical synthesis of silver-doped poly(vinyl alcohol)/graphene composite hydrogels and their physico-chemical and thermal properties [J]. Composites Part B:Engineering,2018,140:99-107. [25] SUBRAMANIAN A S,TEY J N,ZHANG L Y,et al. Synergistic bond strengthening in epoxy adhesives using polydopamine/MWCNT hybrids [J]. Polymer,2016,82:285-294. [26] LIN J Y, YANG Z X, HU X X, et al. The effect of alkali treatment on properties of dopamine modification of bamboo fiber/polylactic acid composites [J]. Polymers,2018,10(4):403:1-12. [27] MA S, HOU J J, YANG H, et al. Preparation of renewable porous TiO2/PVA composite sphere as photocatalyst for methyl orange degradation [J]. Journal of Porous Materials,2018,25(4):1071-1080. [28] LIU P, ZHAO M F. Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP) [J]. Applied Surface Science,2009,255(7):3989-3993. [29] KIM J G, CHA M C, LEE J, et al. Preparation of a sulfur-functionalized microporous polymer sponge and in situ growth of silver nanoparticles:a compressible monolithic catalyst [J]. ACS Applied Materials & Interfaces,2017,9(43):38081-38088.

相似文献/References:

[1]林笑,王凯*,黄婷,等.α溴代肉桂醛的合成工艺改进[J].武汉工程大学学报,2011,(12):33.
 LIN Xiao,WANG Kai,HUANG Ting,et al.Improved technology of αBromocinnamaldehyde[J].Journal of Wuhan Institute of Technology,2011,(06):33.
[2]董志兵,刘 方,王 敏,等.席夫碱的一锅法合成及还原[J].武汉工程大学学报,2016,38(3):209.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 001]
 DONG Zhibing,LIU Fang,WANG Min,et al.Synthesis and Reduction of Schiff Base by One-Pot Method[J].Journal of Wuhan Institute of Technology,2016,38(06):209.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 001]
[3]刘媛媛,薛开诚,张云飞,等.MoS2/PVA光热海绵的制备及其水蒸发性能[J].武汉工程大学学报,2024,46(05):510.[doi:10.19843/j.cnki.CN42-1779/TQ.202307019]
 LIU Yuanyuan,XUE Kaicheng,ZHANG Yunfei,et al.Preparation of MoS2/PVA photothermal sponge andits water evaporation performance[J].Journal of Wuhan Institute of Technology,2024,46(06):510.[doi:10.19843/j.cnki.CN42-1779/TQ.202307019]

备注/Memo

备注/Memo:
收稿日期:2021-06-29基金项目:国家自然科学基金青年项目(51803157);湖北省荆楚卓越计划项目(鄂教高办函〔2017〕6号)作者简介:成鸿静,硕士研究生。E-mail:[email protected]*通讯作者:张云飞,博士,副教授,硕士研究生导师。E-mail:[email protected]引文格式:成鸿静,杨兆华,刘辉,等. 一锅法制备聚乙烯醇载银海绵及其催化性能[J]. 武汉工程大学学报,2021,43(6):616-621.
更新日期/Last Update: 2021-12-27