|本期目录/Table of Contents|

[1]余博文,黄 巍*.基于阈值分割的松材线虫病树计数与定位[J].武汉工程大学学报,2021,43(06):694-700.[doi:10.19843/j.cnki.CN42-1779/TQ.202104033]
 YU Bowen,HUANG Wei*.Counting and Location of Trees with Pine Wilt Disease Based on Threshold Segmentation[J].Journal of Wuhan Institute of Technology,2021,43(06):694-700.[doi:10.19843/j.cnki.CN42-1779/TQ.202104033]
点击复制

基于阈值分割的松材线虫病树计数与定位(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年06期
页码:
694-700
栏目:
机电与信息工程
出版日期:
2021-12-31

文章信息/Info

Title:
Counting and Location of Trees with Pine Wilt Disease Based on Threshold Segmentation
文章编号:
1674 - 2869(2021)06 - 0694 - 07
作者:
余博文黄 巍*
武汉工程大学计算机科学与工程学院,湖北 武汉 430205
Author(s):
YU BowenHUANG Wei*
School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
松材线虫病计数密度估计阈值分割形态学超像素
Keywords:
pine wilt disease counting density estimation threshold segmentation morphology super pixel
分类号:
TP391.41
DOI:
10.19843/j.cnki.CN42-1779/TQ.202104033
文献标志码:
A
摘要:
松材病虫病是最紧迫的威胁之一,最近对中国针叶林造成了严重破坏,为了阻止松材病虫病的快速传播,必须在早期准确检测和计数受感染的树木。提出了一种基于密度图的方法,用于从高分辨率航拍图像中估计具有松材病虫病的树木数量,方法引入了阈值分割、形态处理和超像素技术,以最大限度地减少由于建筑物和岩石等相似背景物体引起的误差。实验表明,所提出的方法优于密度学习 算法,平均绝对误差、均方根误差和绝对误差方差分别从21.3、22.2和127.2减少到8.0、11.7和59.6,计数准确率从54.7%提高到81.3%。
Abstract:
Pine wilt disease (PWD) is one of the most urgent threats, which has caused severe damage to conifer forests in China recently. To stop a rapid PWD spread, it is imperative to accurately detect and count infected trees at its early stage. This work presents a density-map based approach to estimate the number of the trees with PWD from a high-resolution aerial imagery. Threshold segmentation, morphology processing, and superpixels technology are introduced to minimize the errors due to similar background objects such as buildings and rocks. Experiments show that the proposed approach performs better than the density learning algorithm, and mean absolute error, root mean square error and variance of absolute error decrease from 21.3, 22.2, and 127.2 to 8.0, 11.7, and 59.6 respectively, and counting accuracy increases from 54.7% to 81.3%.

参考文献/References:

[1] 国家林业和草原局. 国家林业和草原局公告(2020年第4号)(2020年松材线虫病疫区) [OL]. [2020-03-16]. http://www.gov.cn/zhengce/zhengceku/2020-03/16/content_5491788.htm. [2] 谢毓芬,刘少波,任博文,等. 松材线虫的监测与防治[J]. 科学技术创新,2020(23):185-186. [3] 张瑞瑞,夏浪,陈立平,等. 基于U-Net网络和无人机影像的松材线虫病变色木识别[J]. 农业工程学报,2020,36(12):61-68. [4] 饶成. 松材线虫病的预防与防治措施[J]. 林业与生态,2020(2):38-39. [5] AHUJA N, TODOROVIC S. Extracting texels in 2.1 D natural textures[C]// 2007 IEEE 11th International Conference on Computer Vision. Rio de Janeiro: IEEE Computer Society Press, 2007: 1-8. [6] RABAUD V, BELONGIE S. Counting crowded moving objects[C]// 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06). New York: IEEE Computer Society Press, 2006: 705-711. [7] 蒋冲宇,鲁统伟,闵峰,等. 基于神经网络的发票文字检测与识别方法[J]. 武汉工程大学学报,2019,41(6):586-590.[8] DESAI C, RAMANAN D, FOWLKES C C. Discriminative models for multi-class object layout[J]. International Journal of Computer Vision, 2011, 95(1): 1-12. [9] WU B, NEVATIA R, LI Y. Segmentation of multiple, partially occluded objects by grouping, merging, assigning part detection responses[C]// 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE Computer Society Press, 2008: 1-8. [10] DONG L, PARAMESWARAN V, RAMESH V, et al. Fast crowd segmentation using shape indexing[C]// 2007 IEEE 11th International Conference on Computer Vision. Rio de Janeiro: IEEE Computer Society Press, 2007: 1-8. [11] BARINOVA O, LEMPITSKY V, KHOLI P. On detection of multiple object instances using hough transforms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(9): 1773-1784. [12] DESCOMBES X, MINLOS R, ZHIZHINA E. Object extraction using a stochastic birth-and-death dynamics in continuum[J]. Journal of Mathematical Imaging and Vision, 2009, 33(3): 347-359. [13] SELINUMMI J, SEPP?L? J, YLI-HARJA O, et al. Software for quantification of labeled bacteria from digital microscope images by automated image analysis[J]. Biotechniques, 2005, 39(6):859-863. [14] GIRSHICK R. Fast r-cnn[C]// Proceedings of the IEEE international conference on computer vision. Santiago: IEEE Computer Society Press, 2015: 1440-1448. [15] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society Press,2016:779-788. [16] 李凤迪. 基于深度学习和无人机遥感的松材线虫病树监测系统研究[D]. 泰安:山东农业大学,2020. [17] 刘向东. 高密度人群计数方法的研究与应用[D]. 杭州:浙江工业大学,2012.[18] DAVIES A C, YIN J H, VELASTIN S A. Crowd monitoring using image processing[J]. Electronics & Communication Engineering Journal, 1995, 7(1): 37-47. [19] VELASTIN S A, YIN J H, DAVIES A C, et al. Automated measurement of crowd density and motion using image processing[C]// Seventh International Conference on Road Traffic Monitoring and Control. London: IEEE Computer Society Press, 1994: 127-132. [20] CHO S Y, CHOW T W S, LEUNG C T. A neural-based crowd estimation by hybrid global learning algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999, 29(4): 535-541. [21] MARANA A N, COSTA L F, LOTUFO R A, et al. On the efficacy of texture analysis for crowd monitoring[C]//International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No. 98EX237). Rio de Janeiro: IEEE Computer Society Press, 1998: 354-361. [22] RAHMALAN H, NIXON M S, CARTER J N. On crowd density estimation for surveillance[C]// 2006 IET Conference on Crime and Security. London: IET, 2006: 540-545.[23] WU X, LIANG G, LEE K K, et al. Crowd density estimation using texture analysis and learning[C]// 2006 IEEE International Conference on Robotics and Biomimetics. Kunming: IEEE Computer Society Press, 2006: 214-219. [24] CHAN A B, LIANG Z S J, VASCONCELOS N. Privacy preserving crowd monitoring: counting people without people models or tracking[C]// 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE Computer Society Press, 2008: 1-7. [25] CHAN A B, VASCONCELOS N. Bayesian poisson regression for crowd counting[C]// 2009 IEEE 12th International Conference on Computer Vision. Kyoto: IEEE Computer Society Press, 2009: 545-551. [26] RYAN D, DENMAN S, FOOKES C, et al. Crowd counting using multiple local features[C]// 2009 Digital Image Computing: Techniques and Applications. Melbourne: IEEE Computer Society Press, 2009: 81-88. [27] LEMPITSKY V, ZISSERMAN A. Learning to count objects in images[J]. Advances in Neural Information Processing Systems, 2010, 23: 1324-1332. [28] FIASCHI L, K?THE U, NAIR R, et al. Learning to count with regression forest and structured labels[C]//Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Tsukuba: IEEE Computer Society Press, 2012: 2685-2688. [29] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11): 2274-2282.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-04-27作者简介:余博文,硕士研究生。E-mail:[email protected]*通讯作者:黄 巍,博士,副教授。E-mail:[email protected]引文格式:余博文,黄巍. 基于阈值分割的松材线虫病树计数与定位[J]. 武汉工程大学学报,2021,43(6):694-700.
更新日期/Last Update: 2021-12-27