|本期目录/Table of Contents|

[1]许梓欣,高家俊,季 凯,等.氧化铌的制备及以其催化葡萄糖制备5-羟甲基糠醛[J].武汉工程大学学报,2022,44(01):20-24.[doi:10.19843/j.cnki.CN42-1779/TQ.202012030]
 XU Zixin,GAO Jiajun,JI Kai,et al.Preparation of Niobium Oxide and Its Catalytic Performances During Conversion of Glucose to 5-Hydroxymethylfurfural[J].Journal of Wuhan Institute of Technology,2022,44(01):20-24.[doi:10.19843/j.cnki.CN42-1779/TQ.202012030]
点击复制

氧化铌的制备及以其催化葡萄糖制备5-羟甲基糠醛(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年01期
页码:
20-24
栏目:
化学与化学工程
出版日期:
2022-02-28

文章信息/Info

Title:
Preparation of Niobium Oxide and Its Catalytic Performances During Conversion of Glucose to 5-Hydroxymethylfurfural
文章编号:
1674 - 2869(2022)01 - 0020 - 05
作者:
许梓欣高家俊季 凯张 敏姜兴茂*
武汉工程大学化工与制药学院,湖北 武汉 430205
Author(s):
XU Zixin GAO Jiajun JI Kai ZHANG Min JIANG Xingmao*
School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
氧化铌5-羟甲基糠醛催化葡萄糖
Keywords:
niobium oxide 5-hydroxymethyl furfural catalysis glucose
分类号:
TQ135.1-2
DOI:
10.19843/j.cnki.CN42-1779/TQ.202012030
文献标志码:
A
摘要:
为了改进现有氧化铌制备工艺的缺点,以糖尿素熔融体系一步法制备了氧化铌催化剂,并通过X-射线衍射、氮气吸附脱附、氨气程序升温脱附、吡啶吸附红外光谱、扫描电镜等表征对催化剂的结构和酸性进行了分析。将该催化剂应用于水和仲丁醇双相体系中催化葡萄糖转化为5-羟甲基糠醛(5-HMF),考察了反应时间、反应温度、催化剂用量、底物含量及催化剂重复使用次数对催化活性的影响。结果表明:当催化剂用量为0.06?g,底物质量分数为5%,160℃反应4h时5-HMF的收率可达34.96%,选择性为35.32%,葡萄糖转化率为99%,催化剂经重复使用5次催化活性无明显下降。
Abstract:
To improve the existing preparation process of niobium oxide , the niobium oxide catalyst was prepared by a one-step method in a sugar-urea-melt system. The structure X-ray diffraction, nitrogen adsorption desorption, and scanning electron microscopy. And acidity properties of the catalyst were analyzed by ammonia temperature programmed desorption,pyridine adsorption infrared spectroscopy. The catalyst is applied for the conversion of glucose to 5-hydroxymethylfurfural (5-HMF) in the biphasic system of water and sec-butanol. The effects of reaction time, reaction temperature, catalyst dosage, substrate content and catalyst reuse times on the catalytic activity were investigated. The results showed that the yield of 5-HMF is 34.96%, the selectivity is 35.32%, and the glucose conversion is 99% when the catalyst dosage is 0.06 g, the mass fraction of substrate is 5%, the reaction time is 4 h and the reaction temperature is 160 ℃. The catalyst could be reused at least five times without any obvious deactivation.

参考文献/References:

[1] CHHEDA J N, HUBER G W, DUMESIC J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals [J]. Angewandte Chemie International Editon in English, 2007, 46 (38): 7164-7183. [2] SHELDON R A. Green and sustainable manufacture of chemicals from biomass: state of the art [J]. Green Chemistry , 2014, 16 (3): 950-963. [3] CHENG F, GUO D W, LAI J H, et al. Efficient base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over copper-doped manganese oxide nanorods with tert-butanol as solvent [J]. Frontiers of Chemical Science and Engineering, 2021, 15(4): 960-968.[4] HU L, LIN L,LIU S J. Chemoselective hydrogenation of biomass-derived 5-hydroxymethylfurfural into the liquid biofuel 2,5-dimethylfuran [J]. Industrial & Engineering Chemistry Research,2014,53(24): 9969- 9978. [5] WANG S G, ZHANG Z H, LIU B, et al. Environmen-tally friendly oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-diformylfuran catalyzed by magnetic separation of ruthenium catalyst [J]. Industrial & Engineering Chemistry Research, 2014, 53 (14): 5820-5827. [6] WETTSTEIN S G, ALONSO D M , GVRBVZ E I , et al. A roadmap for conversion of lignocellulosic biomass to chemicals and fuels [J]. Current Opinion in Chemical Engineering, 2012, 1 (3): 218-224. [7] WANG J J, XU W J, REN J W, et al. Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid [J]. Green Chemistry, 2011, 13 (10): 2678-2681. [8] ROSATELLA A A, SIMEONOV S P, FEADE R F M, et al. 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications [J]. Green Chemistry, 2011, 13 (4): 34-42. [9] COSTA N, PEREIRA L G, RESENDE J, et al. Phosphotungstic acid on activated carbon: a remarkable catalyst for 5-hydroxymethylfurfural production [J]. Molecular Catalysis, 2021, 500 (12): 1113-1134.[10] KHAVINET L, RORRER G L. Dehydration of glucose to organic acids in microporous pillared clay catalysts [J]. Applied Catalysis A: General, 1993, 109 (9): 147-165. [11] NIKOLLA E,ROMON-LESHKOV Y,MOLINER M, et al. “One-pot” synthesis of 5-hydroxymethyl-furfural from carbohydrates using tin-beta zeolite[J]. ACS Catalysis, 2011, 1 (4): 408-410. [12] SONG C H, LIU H , LI Y , et al. Production of 5-hydroxymethylfurfural from fructose in ionic liquid efficiently catalyzed by Cr(III)-Al2O3 catalyst[J]. Chinese Journal of Chemistry, 2014, 32 (5): 434-442. [13] WIESFELD J J, SOMMERDIJK N A J M, HENSEN E J M. Early transition metal doped tungstite as an effective catalyst for glucose upgrading to 5-hydroxymethylfurfural [J]. Catalysis Letters, 2018, 148 (10): 3093-3101.[14] NAKAJIMA K, BABA Y, NOMA R, et al. Nb2O5 nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites [J]. Journal of the American Chemical Society, 2011, 133 (12): 4224-4227. [15] YANG F L, LIU Q S, BAI X F, et al. Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst [J]. Bioresour Technol, 2011, 102 (3): 3424-3429. [16] JIMONEZ-MORALES I, MORENO-RECIO M, SANTAMARIA-GONZALEZ J , et al. Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural [J]. Applied Catalysis B: Environmental, 2014, 154 (155): 190-196. [17] DOU Y W, ZHOU S, OLDAANI C, et al. 5-hydroxymethylfurfural production from dehydration of fructose catalyzed by aquivion@silica solid acid [J]. Fuel, 2018, 214: 45-54. [18] CARNITI P, GERVASNI A, BOSSOLA F, et al. Intrinsic and effective acidity study of niobic acid and niobium phosphate by a multitechnique approach[J]. Chemistry of Materials, 2005, 17 (24): 6128-6136. [19] CARNITI P, GERVASNI A, BOSSOLA F, et al. Cooperative action of Br?nsted and Lewis acid sites of niobiumphosphate catalysts for cellobiose conversion in water [J]. Applied Catalysis B: Environmental, 2016, 193 (5): 93-102. [20] ZHANG H F, GENG T, ZHANG H X, et al. Exploration on hydroxymethylation of furfural to 5-hydroxymethylfurfural over mesoporous niobium phosphate catalyst [J]. Catalysis Letters, 2020, 150 (12): 3505-3513.[21] 贾进, 程璐, 张澄, 等. 介孔磷酸铌一锅法催化葡萄糖制备5-羟甲基糠醛 [J]. 精细化工,2018, 35 (2): 255-260.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-12-28基金项目:国家自然科学基金(21878237);武汉市应用基础前沿项目(2108010401011291)作者简介:许梓欣,硕士研究生。E-mail: [email protected]*通讯作者:姜兴茂,博士,教授,硕士研究生导师。E-mail: [email protected]引文格式:许梓欣,高家俊,季凯,等.氧化铌的制备及以其催化葡萄糖制备5-羟甲基糠醛[J]. 武汉工程大学学报,2021,43(4):20-24.
更新日期/Last Update: 2022-03-01